SVD and PCA

Dimensionality Reduction

The curse of dimensionality

Real data usually have thousands, or millions of
dimensions

E.g., web documents, where the dimensionality is the
vocabulary of words
Facebook graph, where the dimensionality is the
number of users

Huge number of dimensions causes problems

Data becomes very sparse, some algorithms become
meaningless (e.g. density based clustering)

The complexity of several algorithms depends on the
dimensionality and they become infeasible.

Dimensionality Reduction

Usually the data can be described with fewer
dimensions, without losing much of the meaning
of the data.

The data reside in a space of lower dimensionality

Essentially, we assume that some of the data is

noise, and we can approximate the useful part

with a lower dimensionality space.
Dimensionality reduction does not just reduce the

amount of data, it often brings out the useful part of
the data

Dimensionality Reduction

We have already seen a form of
dimensionality reduction

LSH, and random projections reduce the
dimension while preserving the distances

SVD is “the Rolls-Royce and the Swiss Army
Knife of Numerical Linear Algebra.”*
*Dianne O'Leary, MMDS '06

Data in the form of a matrix

We are given n objects and d attributes describing the

objects. Each object has d numeric values describing
it.

We will represent the data as a nxd real matrix

We can now use tools from linear algebra to process the
data matrix

Our goal is to produce a new nxk matrix B such that

It preserves as much of the information in the original
matrix A as possible

It reveals something about the structure of the data in

terms

(e.g., theorem, proof, etc.)

(

A

documents

= frequency of the j-th
\ term in the i-th document

Find subsets of terms that bring documents
together

movies

customers A
=rating of |-th
product by the i-th
\ customer /

Find subsets of movies that capture the behavior or
the customers

Linear algebra

We assume that vectors are column vectors.

We use v' for the transpose of vector v (row vector)
Dot product: (Ixn,nx1 — 1x1)

= The do_hproduct is the projection of vector v on u (and vice versza)

[1,2,3] 1| =12

T -2
uTv = |lv||llul| cos(w,v) - ———————- ————

If ||[u]| = 1 (unitvector)thenu®v isthe projection length of v onu

4
[—1,2, 3] [_1] = 0 orthogonal vectors
2

Orthonormal vectors: two unit vectors that are orthogonal

Matrices

An matrix A is a collection of n row vectors and m column
vectors T
A= a,; da, das A= |— ag —
— ol -
Matrix-vector multiplication
Right multiplication Au: projection of u onto the row vectors of 4, or
projection of row vectors of A onto u.
Left-multiplication : projection of u onto the column vectors of 4,
or projection of column vectors of A onto u
Example:

1 0
[1,2,3] lO 1] = [1,2]
0 0

Rank

Row space of A: The set of vectors that can be written
as a linear combination of the rows of A

All vectors of the formv = u’' A

Column space of A: The set of vectors that can be
written as a linear combination of the columns of A

All vectors of the form v = Au.

Rank of A: the number of linearly independent row (or
column) vectors

These vectors define a basis for the row (or column) space
of A

Rank-1 matrices

In a rank-1 matrix, all columns (or rows) are
multiples of the same column (or row) vector

1 2 —-1]
A=12 4 =2

All rows are multiples of r = [1,2, —1]
All columns are multiples of ¢ = [1,2,3]7

External product: (nx1,1xm - nxm)
The resulting nxm has rank 1: all rows (or columns)
are

T

A=r1cC

Eigenvectors

(Right) Eigenvector of matrix A: a vector v
suchthat Av = Av
A: eigenvalue of eigenvector v

A square matrix A of rank r, has r orthonormal
eigenvectors 14, U, ..., U, with eigenvalues
A, Ao, o, Are

Eigenvectors define an orthonormal basis for
the column space of A

Singular Value Decomposition

o1 ; _ _vlT_
T

A=U 3 VT = [ugup,—ul| %2 V2
[nxm] =[nxr] [rxr] [rxm] 0 ' o U.T
L ’r'_ L ’r‘_

r: rank of matrix A

01,= 05 = -+ = 0, singular values of matrix A (also, the square roots of

eigenvalues of and)
Uy, Uy, ..., U: left singular vectors of A (also eigenvectors of)
V4, V>, ..., Up: right singular vectors of A (also, eigenvectors of)

A = oyu vl + ouvl + -+ o u vl

Symmetric matrices

Special case: A is symmetric positive definite
matrix

A= Auul + Luul + -+ Luul

: Eigenvalues of
: Eigenvectors of

Singular Value Decomposition

The left singular vectors are an orthonormal
basis for the row space of A.

The right sinqular vectors are an orthonormal
basis for the column space of A.

If A has rank r, then A can be written as the sum
of r rank-1 matrices

There are r “linear components” (trends) in A.

Linear trend: the tendency of the row vectors of A to align with vector
v

Strength of the i-th linear trend: ||Av;|| = o;

An (extreme) example

Document-term matrix
Blue and Red rows (colums) are linearly dependent

a1 B

There are two prototype documents (vectors of words): blue and red

To describe the data is enough to describe the two prototypes, and the
projection weights for each row

A'is a rank-2 matrix

An (more realistic) example

Document-term matrix

There are two prototype documents and words but
they are noisy

We now have more than two singular vectors, but the
strongest ones are still about the two types.

By keeping the two strongest singular vectors we obtain
most of the information in the data.

This is a rank-2 approximation of the matrix A

P
=

|l
s

M
o~
=

nxd n x k k x k kxd

: orthogonal matrix containing the top k left (right)
singular vectors of
Y. : diagonal matrix containing the top k singular values of

is an approximation of
A isthe approximation of

SVD as an optimization

The rank-k approximation matrix

produced by the top-k singular vectors of A
minimizes the Frobenious norm of the
difference with the matrix A

_ _ 2
Ak B argB:raI}lea()l-(B)zk”A B”F

14~ BIZ =) (4 - By)’
L]

What does this mean?

We can project the row (and column) vectors
of the matrix A into a k-dimensional space
and preserve most of the information
(Ideally) The k dimensions reveal latent
features/aspects/topics of the term
(document) space.

(Ideally) The A, approximation of matrix A,
contains all the useful information, and what
is discarded is noise

Latent factor model

Rows (columns) are linear combinations of
latent factors

E.g., in our extreme document example there are
two factors

Some noise is added to this rank-k matrix
resulting in higher rank

SVD retrieves the latent factors (hopefully).

A

features

objects

significant

noise

significant

Application: Recommender systems

Data: Users rating movies

Sparse and often noisy
Assumption: There are k basic user profiles, and each user

is a linear combination of these profiles
E.g., action, comedy, drama, romance
Each useris a weighted cobination of these profiles

The “true” matrix has rank k
What we observe is a , and version of this

matrix

The rank-k approximation Ay, is provably close to A
Algorithm: compute Aj, and predict for user u and movie

m, the value A, [m, ul.
Model-based collaborative filtering

SVD and PCA

PCA is a special case of SVD on the centered
covariance matrix.

Covariance matrix

Goal: reduce the dimensionality while preserving the
“information in the data”
Information in the data: variability in the data

We measure variability using the covariance matrix.
Sample covariance of variables X andY

E(xi —u) " i — uy)

Given matrix A, remove the mean of each column
from the column vectors to get the centered matrix C
The matrix V' = C'C isthe covariance matrix of the

row vectors of

PCA: Principal Component Analysis

We will project the rows of matrix A into a new
set of attributes (dimensions) such that:

The attributes have zero covariance to each other
(they are orthogonal)

Each attribute captures the most remaining variance
in the data, while orthogonal to the existing attributes

The first attribute should capture the most variance in the
data

For matrix C, the variance of the rows of Wgen
projected to vector x is given by % = ||Cx||
The right singular vector of C maximizes ¢!

PCA Algorithm

The PCA algorihm consists of main steps

1. Subfract the mean: subiract the mean from each of the daia dimensions. The mean subiracted is the average across each dimension. This produces a data sef whose mean is zero

2. Calculate the covariance matrix
Xn - - e , . ; .
"™ =(6,5,6; = cov(Dim, Dim)

where (7™M is a matri which each entry s the result of calcuiating the covariance befieen tho separate cimensions

3. Calulate the eigenvectors and eigenvalues of the covariance mafrix

4. Choose components and form a feature vector: once eigenvectors are found from the covariance matrix, fhe next step s to order them by eigenvalue, highest to lowest. So that the components are sored in
order of significance. The number of eigenvectors that you choose will be the number of dimensions of the new data sef. The objective of this step is construct a feature vector (matr of vectors). From the fst
of eigenvectors take the eigenvectors selected and form a matrix with them in the columns

FeatureVector = (giq 1, eig 2, . &ig_n)

. Derive the new data sel. Take the ranspose of the FeatureVector and multiply it on the et of the original data sef, transposed
FinalData = RowFeatureVector x RowDataAdjusted
Where RowFeatureVector is the malrix with the eigenvectors in the columns transposed (he eigenvectors are nowin fhe rows and the most significant are in the top) and RonDataAdjusted is the mean-
adjusted data transposed (the data ftems are in each column, with each row holding a separate dimension)

5
2nd (right)
singul]r
4| vector |
3 - —
ast (right) singular
vector
o | | |

4.5 5.0

5.5

6.0

dimensional points

Input:

Output:

ast (right) singular vector:
direction of maximal variance,

2nd (right) singular vector:
direction of maximal variance,
after removing the projection of
the data along the first singular
vector.

2nd (right)

vector

ast (right) singular

vector
| | |

4.5 5.0 5.5

6.0

measures how much of the
data variance is explained by the
first singular vector.

measures how much of the
data variance is explained by the
second singular vector.

Singular values tell us something

about the variance

The variance in the direction of the k-th principal component
is given by the corresponding singular value

Singular values can be used to estimate how many
components to keep

Rule of thumb: keep enough to explain 85% of the variation:

> o

= ~ 0.85

n

d117 1T Aqn

students

An1 1 dnn
legal illegal

a;;: usage of student i of drug j

A=UzVT

: : : D
First right singular vector v, o

More or less same weight to all drugs

Discriminates heavy from light users
Second right singular vector ©

Positive values for legal drugs, negative for Hegal

Drug 2

Another property of PCA/SVD

The chosen vectors are such that minimize the sum of square differences
between the data vectors and the low-dimensional projections

5

4 -

3 -
ast (right) singular
vector

o | | |

4.0 4.5 5.0 5.5 6.0

Application

Latent Semantic Indexing (LSI):

Apply PCA on the document-term matrix, and
index the k-dimensional vectors

When a query comes, project it onto the k-
dimensional space and compute cosine similarity
in this space

Principal components capture main topics, and
enrich the document representation

SVD InR

SVD

dat = seq(1,240,2)

X = matrix(dat,ncol=12)

s = svd(X)

A =diag(s$d)

s$U %*% A %*% t(ssv) # X=UAV'

dat = seq(1,240,2)

X = matrix(dat,ncol=12)

s = svd(X, nu = nrow(X), nv = ncol(X))

A =diag(s$d)

A = cbind(A, o) # Add two columns with zero, in order to A have the same dimensions of X.
A = cbind(A, o)p

s$U %*% A %*% t(ssv) # X=UAV'

install.packages("jpeg")
library(jpeg)

tux = readJPEG("tux.jpg")

tux = imagematrix(tux,type='grey")
plot(tux)

SVD InR

reduce <- function(A,dim) §
#Calculates the SVDprincomp
sing <- svd(A)

#Approximate each result of SVD with the given dimension
u<-as.matrix(singsu[, 1:dim])

v<-as.matrix(sing$v[, 1:dim])
d<-as.matrix(diag(sing$d)[1:dim, 1:dim])

#Create the new approximated matrix
return(imagematrix(u%*%d%*%t(v), type='grey"))
}

tux_d = svd(tux)
length(tux_dsd)
plot(reduce(tux,1))
90% reduction
plot(reduce(tux,35))

plot(pcsscores[,2], pcsscores[,1])

PCAINR

PCA

pC = princomp(iris2)
summary(pc)
pcs$scores
pcsloadings

