
SVD and PCA

� Real data usually have thousands, or millions of
dimensions
� E.g., web documents, where the dimensionality is the

vocabulary of words

� Facebook graph, where the dimensionality is the
number of users

� Huge number of dimensions causes problems
� Data becomes very sparse, some algorithms become

meaningless (e.g. density based clustering)

� The complexity of several algorithms depends on the
dimensionality and they become infeasible.

� Usually the data can be described with fewer
dimensions, without losing much of the meaning
of the data.
� The data reside in a space of lower dimensionality

� Essentially, we assume that some of the data is
noise, and we can approximate the useful part
with a lower dimensionality space.
� Dimensionality reduction does not just reduce the

amount of data, it often brings out the useful part of
the data

� We have already seen a form of

dimensionality reduction

� LSH, and random projections reduce the

dimension while preserving the distances

SVD is “the Rolls-Royce and the Swiss Army
Knife of Numerical Linear Algebra.”*
*Dianne O’Leary, MMDS ’06

� We are given n objects and d attributes describing the
objects. Each object has d numeric values describing
it.

� We will represent the data as a n×d real matrix A.
� We can now use tools from linear algebra to process the

data matrix

� Our goal is to produce a new n×k matrix B such that
� It preserves as much of the information in the original

matrix A as possible

� It reveals something about the structure of the data in A

n documents

d terms
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th
term in the i-th document

Find subsets of terms that bring documents
together

n customers

d movies

Aij = rating of j-th
product by the i-th
customer

Find subsets of movies that capture the behavior or
the customers

� We assume that vectors are column vectors.
� We use �� for the transpose of vector � (row vector)
� Dot product: ��� (1×�, �×1	 → 	1×1)

� The dot product is the projection of vector � on � (and vice versa)

� 1, 2, 3
4
1
2

� 12
� ��� � � � cos��, ��

� If ||�|| 	� 	1	(unit vector) then ��� is the projection length of � on �

� �1, 2, 3
4
�1
2

� 0 orthogonal vectors

� Orthonormal vectors: two unit vectors that are orthogonal

� An n×m matrix A is a collection of n row vectors and m column
vectors

� � 	
| | |
�� �� ��
| | |

� � 	
� ��� �
� ��� �
� ��� �

� Matrix-vector multiplication
� Right multiplication ��: projection of u onto the row vectors of �, or

projection of row vectors of � onto �.

� Left-multiplication ���: projection of � onto the column vectors of �,
or projection of column vectors of � onto �

� Example:

1,2,3
1 0
0 1
0 0

� �1,2�

� Row space of A: The set of vectors that can be written
as a linear combination of the rows of A
� All vectors of the form � � ���

� Column space of A: The set of vectors that can be
written as a linear combination of the columns of A
� All vectors of the form � � ��.

� Rank of A: the number of linearly independent row (or
column) vectors
� These vectors define a basis for the row (or column) space

of A

� In a rank-1 matrix, all columns (or rows) are
multiples of the same column (or row) vector

� � 	
1 2 �1
2 4 �2
3 6 �3

� All rows are multiples of � � �1,2, �1�
� All columns are multiples of � 	 1,2,3 �
� External product: ��� (�×1	, 1×!	 → 	�×!)

� The resulting �×! has rank 1: all rows (or columns)
are linearly dependent

� � � � �

� (Right) Eigenvector of matrix A: a vector v

such that �� � "�
� ": eigenvalue of eigenvector �

� A square matrix A of rank r, has r orthonormal

eigenvectors ��, ��, … , �$ with eigenvalues

"�, "�, … , "$.

� Eigenvectors define an orthonormal basis for

the column space of A

� � %			Σ			'� �	 ��, ��, ⋯ , �$

)�
)� 0

0 ⋱
)$

���
���
⋮
�$�

�)�, ,)� , ⋯ ,)$: singular values of matrix � (also, the square roots of
eigenvalues of ��� and ���)

� ��, ��, … , �$: left singular vectors of � (also eigenvectors of ���)

� ��, ��, … , �$: right singular vectors of � (also, eigenvectors of ���)

� �)������ -)������ -⋯-)$�$�$�

[n×r] [r×r] [r×m]

r: rank of matrix A

[n×m] =

� Special case: A is symmetric positive definite

matrix

� � "������ - "������ -⋯- "$�$�$�

� "� , "� , ⋯ , "$, 0: Eigenvalues of A

� ��, ��, … , �$: Eigenvectors of A

� The left singular vectors are an orthonormal
basis for the row space of A.

� The right singular vectors are an orthonormal
basis for the column space of A.

� If A has rank r, then A can be written as the sum
of r rank-1 matrices

� There are r “linear components” (trends) in A.
� Linear trend: the tendency of the row vectors of A to align with vector

v
� Strength of the i-th linear trend: ||�./|| 	� 0/

� Document-term matrix
� Blue and Red rows (colums) are linearly dependent

� There are two prototype documents (vectors of words): blue and red
� To describe the data is enough to describe the two prototypes, and the

projection weights for each row

� A is a rank-2 matrix

� � 	 1�, 1�
2��

2��

A =

� Document-term matrix

� There are two prototype documents and words but
they are noisy
� We now have more than two singular vectors, but the

strongest ones are still about the two types.

� By keeping the two strongest singular vectors we obtain
most of the information in the data.
▪ This is a rank-2 approximation of the matrix A

A =

Uk (Vk): orthogonal matrix containing the top k left (right)
singular vectors of A.
Σk: diagonal matrix containing the top k singular values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best approximation of A

� The rank-k approximation matrix �3
produced by the top-k singular vectors of A

minimizes the Frobenious norm of the

difference with the matrix A

�3 � arg max9:$;<3 9 =3 �	 � > ?�

� � > ?� � @ �AB � >AB
�

A,B

� We can project the row (and column) vectors

of the matrix A into a k-dimensional space

and preserve most of the information

� (Ideally) The k dimensions reveal latent

features/aspects/topics of the term

(document) space.

� (Ideally) The �3 approximation of matrix A,

contains all the useful information, and what

is discarded is noise

� Rows (columns) are linear combinations of k

latent factors

� E.g., in our extreme document example there are

two factors

� Some noise is added to this rank-k matrix

resulting in higher rank

� SVD retrieves the latent factors (hopefully).

A VTΣΣΣΣU=

objects

features

significant

noise
n

o
is

e noise

si
g

n
if

ic
a

n
t

sig.

=

� Data: Users rating movies
� Sparse and often noisy

� Assumption: There are k basic user profiles, and each user
is a linear combination of these profiles
� E.g., action, comedy, drama, romance

� Each user is a weighted cobination of these profiles

� The “true” matrix has rank k
� What we observe is a noisy, and incomplete version of this

matrix �C
� The rank-k approximation �C3 is provably close to �3

� Algorithm: compute �C3 and predict for user � and movie
!, the value �C3�!, ��.
� Model-based collaborative filtering

� PCA is a special case of SVD on the centered

covariance matrix.

� Goal: reduce the dimensionality while preserving the
“information in the data”

� Information in the data: variability in the data

� We measure variability using the covariance matrix.

� Sample covariance of variables X and Y

@ DA � EF ��GA � EH�
A

� Given matrix A, remove the mean of each column
from the column vectors to get the centered matrix C

� The matrix '	 � 	I�I	is the covariance matrix of the
row vectors of A.

� We will project the rows of matrix A into a new
set of attributes (dimensions) such that:
� The attributes have zero covariance to each other

(they are orthogonal)

� Each attribute captures the most remaining variance
in the data, while orthogonal to the existing attributes
▪ The first attribute should capture the most variance in the

data

� For matrix C, the variance of the rows of C when
projected to vector x is given by)� �	 ID �

� The right singular vector of C maximizes)�!

4.0 4.5 5.0 5.5 6.0
2

3

4

5

Input: 2-d dimensional points

Output:

1st (right) singular
vector

1st (right) singular vector:
direction of maximal variance,

2nd (right)
singular
vector

2nd (right) singular vector:
direction of maximal variance,
after removing the projection of
the data along the first singular
vector.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

σσσσ1: measures how much of the
data variance is explained by the
first singular vector.

σσσσ2: measures how much of the
data variance is explained by the
second singular vector.σ1

1st (right) singular
vector

2nd (right)
singular
vector

� The variance in the direction of the k-th principal component

is given by the corresponding singular value σk
2

� Singular values can be used to estimate how many

components to keep

� Rule of thumb: keep enough to explain 85% of the variation:

85.0

1

2

1

2

≈

∑

∑

=

=

n

j

j

k

j

j

σ

σ

� � 	
��� ⋯ ��<
⋮ ⋱ ⋮

�<� ⋯ �<<

� � %Σ'�

� First right singular vector ��
� More or less same weight to all drugs

� Discriminates heavy from light users
� Second right singular vector

� Positive values for legal drugs, negative for illegal

students

drugs

legal illegal

�AB: usage of student i of drug j

Drug 2

Drug 1

� The chosen vectors are such that minimize the sum of square differences
between the data vectors and the low-dimensional projections

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) singular
vector

� Latent Semantic Indexing (LSI):

� Apply PCA on the document-term matrix, and

index the k-dimensional vectors

� When a query comes, project it onto the k-

dimensional space and compute cosine similarity

in this space

� Principal components capture main topics, and

enrich the document representation

SVD
dat = seq(1,240,2)
X = matrix(dat,ncol=12)
s = svd(X)
A = diag(s$d)
s$u %*% A %*% t(s$v) # X = U A V'

dat = seq(1,240,2)
X = matrix(dat,ncol=12)
s = svd(X, nu = nrow(X), nv = ncol(X))
A = diag(s$d)
A = cbind(A, 0) # Add two columns with zero, in order to A have the same dimensions of X.
A = cbind(A, 0)p
s$u %*% A %*% t(s$v) # X = U A V'

install.packages("jpeg")
library(jpeg)
tux = readJPEG("tux.jpg")
tux = imagematrix(tux,type='grey')
plot(tux)

reduce <- function(A,dim) {
#Calculates the SVDprincomp
sing <- svd(A)

#Approximate each result of SVD with the given dimension
u<-as.matrix(sing$u[, 1:dim])
v<-as.matrix(sing$v[, 1:dim])
d<-as.matrix(diag(sing$d)[1:dim, 1:dim])

#Create the new approximated matrix
return(imagematrix(u%*%d%*%t(v),type='grey'))

}

tux_d = svd(tux)
length(tux_d$d)
plot(reduce(tux,1))
90% reduction
plot(reduce(tux,35))

plot(pc$scores[,2], pc$scores[,1])

PCA

pc = princomp(iris2)

summary(pc)

pc$scores

pc$loadings

