Opportunistic Networks and Their Privacy and Security Challenges

Leszek Lilien1,2, Zille Huma Kamal1, Vijay Bhuse3 and Ajay Gupta1
1 WiSe Lab, Department of Computer Science, Western Michigan University, Kalamazoo, Michigan
2 Affiliated with the Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University, West Lafayette, Indiana

1. Opportunistic Networks – The Missing Link?
- Communication network forms the backbone of any organization or service
 - Including emergency response systems
 - Delays, even chaos, in responses most often blamed on communications breakdown
 - Also blamed on lack of other resources
- We have invented an entirely new category of computer networks: Opportunistic Networks, or Oppnets – can help in such problems
 - In oppnets, diverse systems—not deployed originally as oppnet nodes—join an oppnet dynamically in order to perform certain tasks they have been invited (or ordered) to participate in

2. Objectives
- Oppnets are envisioned to provide, among others:
 - Bridges between disjoint communication media
 - Additional platforms for offloading tasks
 - Additional sensing modalities by integrating existing independent sensory systems

3. Seed Oppnet and Expanded Oppnet
- First, a pre-designed seed oppnet is deployed (Fig. 2)
- Seed oppnet growth (cf. GROWTH block in Fig. 1)
 - Detect candidate helpers
 - Evaluate candidates
 - Invite and admit selected candidates
 - Candidate that joins oppnet becomes a helper
 - Integrate helpers’ resources
- Seed oppnet grows into expanded oppnet (Fig. 3)
 - Collaborative processing
 - Oppnet determines useful helper functionalities
 - Oppnet offloads tasks to helpers
 - Oppnet manages offloaded tasks

4. Example Emergency Application
- Seed oppnet is deployed after a man-made or natural disaster
- Seed orders (in emergency!) many helpers to join:
 - Computer network – ordered via wired Internet link
 - Cellphone tower – via Bluetooth-enabled cellphone
 - Satellite – via a direct satellite link
 - Home area network – via embedded processors in a refrigerator
 - Microwave data network – via a microwave relay
- Example shows how an oppnet can leverage resources—such as communication, computation, sensing, storage, etc.—available in its environment

5. Privacy Challenges
- Privacy is the „make it or break it“ issue for oppnets
 - As for any pervasive computing technology
 - Protecting oppnet from helpers and helpers from oppnet
 - Assuring privacy
 - Privacy of data storage and processing
 - Privacy of communication based on its patterns
 - E.g., broadcast/multicast from/to the base station
- Using trust and increasing it
 - Routing through more trusted systems
 - Using shared secrets with b-cast authentication
 - Using digital signatures

6. Security Challenges
- Prevent malicious helpers from joining
- Prevent common attacks
 - MITM (man-in-the-middle)
 - Packet dropping
 - DoS attacks on weak devices
 - ID spoofing
- Develop „good“ lightweight cryptographic primitives
- Use Intrusion Detection (ID) – when prevention fails
 - Heterogeneous – real-time ID and response
 - Secure distribution of information amongst nodes about malicious entities

7. Other Research Challenges (cf. Fig. 1)
- Detecting candidate helpers in diverse communication media
 - Integrate disparate technologies
 - Possible solution: virtualize at the network layer to seamlessly enable communication between devices in different medium
 - Similar to virtual machines in grid computing
 - Distinguish between devices found in the same communication medium
 - Differentiate between devices by services rendered
 - Classify and evaluate candidate’s usefulness and reliability
 - Categorize as computation, communication, sensory, storage, etc., resource
 - Usefulness depends on oppnet’s goals
- Inviting candidates and admitting the ones that accept invitation
 - Candidates are helpers not slaves
 - But in emergencies, mandatory „call to arms“
- Integrating helpers’ resources
 - Managing network dynamics, offloading tasks to helpers that are best suited for given jobs, coordinating tasks
- Collaborative processing
 - Data integration, information fusion
- Restoring and releasing helpers
 - To minimize oppnet’s intrusiveness w.r.t. helpers