Software Quality

- Software engineering is the production of quality software
- External quality
 - May be detected by its users
- Internal quality
 - Perceptible only to computer professionals who have access to the actual software text
- What matters is the external quality, but it can only be achieved through internal quality

External Quality

- Correctness
 - Perform the exact tasks as specified
- Robustness
 - Ability to react appropriately to abnormal conditions
- Extendibility
 - Ease of adapting program to changes of specification
- Reusability
 - Ability of software elements to serve for the construction of many different applications.
External Quality

- Other Quality
 - Compatibility, Portability, Ease of Use, Efficiency, Timeliness, Integrity
- Tradeoffs
 - Integrity v.s. Ease of Use
 - Efficiency v.s. Portability
 - Timeliness v.s. Extendibility

Software Life Cycle

Phase 1: Specification

- Answers “What do we build?”
- Define clearly all aspects of the problem
 - What is input (valid/invalid) data?
 - What assumptions are possible?
 - Are there special cases?
 - What enhancements are likely in the future?
Software Life Cycle
Phase 2: Design
- Divide into manageable parts - modules
- Specify each module's purpose, assumptions, input, and output
- Develop algorithms
- Look for existing software components

Software Life Cycle
Phase 3: Risk Analysis
- Attempts to answer "What can go wrong, and how bad can it be?"
- Predict and manage what risks you can
- Risks to timetable, cost, human health, etc. should be taken into account
- Risks can greatly influence the direction of a project

Software Life Cycle
Phase 4: Verification
- Answers "Are the algorithms correct?"
- Some algorithms can be proven correct
 - assertion: condition at a certain point
 - invariant: condition that is always true
Software Life Cycle
Phase 5: Coding
• Translate the algorithms into a particular programming language
• Minor phase in the software life cycle

Software Life Cycle
Phase 6: Testing
• Answers “Did we build it correctly?”
• Try to make the software fail
• Develop as many test cases as possible
• Both a science and an art

Software Life Cycle
Phase 7: Refining a Solution
• Add bells and whistles
• Retest after any changes are made
Software Life Cycle
Phase 8: Production
- Distribute it
- Install it

Software Life Cycle
Phase 9: Maintenance
- Fix previously undiscovered bugs
- Add new features
- Enhance old features
- Generally the most costly phase (80% of total cost by some estimates)

Software Life Cycle
Documentation
- Performed extensively in every phase
- In modern software development, there are typically different people working on each phase of the software life cycle
- Novice programmers usually undervalue documentation