Trees

Terminology

• Trees are hierarchical
 - “parent-child” relationship
 • A is the parent of B
 • B is a child of A
 • B and C are siblings
 • Generalized to ancestor and descendant
 - root: the only node without parent
 - leaf: a node has no children
 - Subtree of node N: A tree that consists of a child (if any) of N and the child’s descendants

General Tree v.s. Binary Tree

• A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets:
 - A node r, the root
 - Sets that are general trees, called subtrees of r

• A binary tree is a set T of nodes such that
 - T is empty, or
 - T is partitioned into 3 disjoint subsets:
 • A node r, the root
 • 2 possibly empty sets that are binary trees, called left and right subtrees of r
General Tree v.s. Binary Tree

Represent Algebraic Expressions using Binary Tree

Height of Trees

- Trees come in many shapes
- Height of any tree: number of nodes on the longest path from the root to a leaf
Full Binary Trees

- Full binary tree
 - All nodes that are at a level less than h have two children, where h is the height
- Each node has left and right subtrees of the same height

If the height is $h>0$
- The number of leaves is $2^{(h-1)}$
- The number of nodes is $2^h - 1$

If the number of nodes is $N>0$
- The height is $\log_2(N+1)$
- The number of leaves is $(N+1)/2$
Complete Binary Trees

• Complete binary tree
 - A binary tree full down to level h-1, with level h filled in from left to right

Balanced Binary Trees

• Balanced binary tree
 - The height of any node’s right subtree differs from the height of the node’s left subtree by no more than 1
 - A complete binary tree is balanced

ADT Binary Tree

• Operations
 - Create/destroy a tree
 - Determine/change root
 - Determine emptiness
 - Attach/Detach left/right subtree to root
 - Return a copy of the left/right subtree of root
 - Traverse the nodes
Build a Tree

Tree1.setRootData('F');
Tree1.attachLeft('G');

Tree2.setRootData('D');
Tree2.attachLeftSubTree(tree1);

Tree3.setRootData('B');
Tree3.attachLeftSubtree(tree2);
Tree3.attachRight('E');

Tree4.setRootData('C');
binTree.createBinaryTree('A', tree3, tree4);

Traversal of a Binary Tree

• A binary tree is empty, or root with two binary subtrees

traverse(binTree) {
 if (!isEmpty(binTree)) {
 traverse(left subtree of binTree's root);
 traverse(right subtree of binTree's root);
 }
}

• Only thing missing is to display root’s data

Preorder, inorder, postorder

traverse(binTree)
if (!isEmpty(binTree))
 display data in binTree’s root;
traverse(left subtree of binTree’s root);
traverse(right subtree of binTree’s root);

traverse(binTree)
if (!isEmpty(binTree))
 traverse(left subtree of binTree’s root);
 display data in binTree’s root;
traverse(right subtree of binTree’s root);

traverse(binTree)
if (!isEmpty(binTree))
 traverse(left subtree of binTree’s root);
 traverse(right subtree of binTree’s root);
 display data in binTree’s root;
Traversal Examples

Traversing on Algebraic Expressions

- Preorder, inorder, and postorder print prefix, infix and postfix expressions

Traversing is O(N)

- To traverse a binary tree with N nodes
 - Visits every node just once
 - Each visit performs the same operations on each node, independently of N
Array-Based Implementation of a Binary Tree

- Represent binary tree by using an array of tree nodes

```cpp
class TreeNode {
private:
    TreeNode();
    TreeNode(TreeItem& nItem, int left, int right);
    TreeItem item;
    int leftC;
    int rightC;
    friend class BinaryTree;
};
```

```cpp
class BinaryTree {
public:
    //
    private:
    TreeNode[MAX] tree;
    int root;
    int free;
};
```

Array-Based Implementation of a Complete Binary Tree

- If nodes numbered according to a level-by-level scheme
 - Root index: 0
 - Given any node tree[i]
 - Left child index: \(2^i + 1\)
 - Right child index: \(2^i + 2\)
 - Parent index: \((i-1)/2\)
Pointer-Based Implementation

class TreeNode {
 private:
 TreeNode();
 TreeNode(TreeItem& nItem,
 TreeNode *left=NULL,
 TreeNode *right=NULL);
 TreeItem item;
 TreeNode *leftPtr;
 TreeNode *rightPtr;
 friend class BinaryTree;
};

class BinaryTree {
 public:
 ...
 private:
 TreeNode *root;
};

BinaryTree::BinaryTree(TreeItem& rootItem) {
 root = new TreeNode(rootItem, NULL, NULL);
}

void BinaryTree::attachLeft(TreeItem& newItem) {
 if(root!=NULL && root->leftPtr == NULL)
 root->leftPtr = new TreeNode(newItem, NULL, NULL);
}

void BinaryTree::attachLeftSubtree(BinaryTree& tree) {
 if (root!=NULL && root->leftPtr == NULL){
 root->leftPtr = tree.root;
 tree.root = NULL;
 }
}
Pointer-Based Implementation

```cpp
void BinaryTree::inorder(TreeNode *treePtr, FunctionType visit) {
    if (treePtr != NULL) {
        inorder(treePtr->leftPtr, visit);
        visit(treePtr->item);
        inorder(treePtr->rightPtr, visit);
    }
}
```

• How about preorder(), postorder()?

```cpp
void BinaryTree::destroyTree(TreeNode *&treePtr) {
    if (treePtr != NULL) {
        destroyTree(treePtr->leftPtr);
        destroyTree(treePtr->rightPtr);
        delete treePtr;
        treePtr = NULL;
    }
}
```

• Can we have preorder, or inorder style destroyTree()?

Binary Search Tree

• A deficiency of the ADT binary tree which is corrected by the ADT binary search tree
 - Searching for a particular item
• Node N in Binary Search Tree
 - N's value > all values in its left subtree T_L
 - N's value < all values in its right subtree T_R
 - Both T_L and T_R are binary search trees
The ADT Binary Search Tree

```
BinarySearchTree
root
left subtree
right subtree
createBinarySearchTree()
destroyBinarySearchTree()
isEmpty()
searchBinarySearchTree()
insert()
search()
preorderTraverse()
inorderTraverse()
pastorderTraverse()
```

Efficient Search Algorithm

```
search(BinarySearchTreeNode *nd, keyType key)
{
    if (nd == NULL)
        return Not Found
    else if (key == nd->item)
        return Found
    else if (key < nd->item)
        search(nd->left, key);
    else
        search(nd->right, key);
}
```

Insertion in Binary Search Tree
Insert a Node

```c
insertItem(BinarySearchTreeNode *nd, TreeItem item)
{
    if (nd == NULL)
        nd = new TreeNode(item, NULL, NULL);
    else if (item < nd->item)
        insertItem(nd->left, item);
    else
        insertItem(nd->right, key);
}
```

General Trees

- An n-ary tree is a tree whose nodes each can have no more than n children