2/19/2015 Odd-even mergesort

Sorting networks

Odd-even mergesort

The odd-even mergesort algorithm was developed by K.E. BatcHer [Bat 68]. It is based on a merge algorithm that
merges two sorted halves of a sequence to a completely sorted sequence.

In contrast to mergesort, this algorithm is not data-dependent, i.e. the same comparisons are performed
regardless of the actual data. Therefore, odd-even mergesort can be implemented as a sorting network.

Merge algorithm

The following algorithm merges a sequence whose two halves are sorted to a sorted sequence.

Algorithm odd-even merge(n)

Input: sequence dy, ..., dy-1 of length n>1 whose two halves ay, ..., ay0o-1 and ayo, ..., a,.4 are
sorted (n a power of 2)

Output: the sorted sequence
Method: if n>2 then

1. apply odd-even merge(n/2) recursively to the even subsequence ag, dy, ..., @;.2 and to
the odd subsequence aq, a3, , ..., Ay-1;

2. compare [a;: aj+q]forallie{1,3,5,7, ..., n-3}

else

compare [ag : a4];

Correctness
The correctness of the merge algorithm is proved using induction and the 0-1-principle.

If n =27 the sequence is sorted by the comparison [ag : a4]. So letn = 2k, k > 1 and assume the algorithm is
correct for all smaller & (induction hypothesis).

Consider the 0-1-sequence a = ay, ..., d;-1 to be arranged in rows of an array with two columns. The

corresponding mapping of the index positions is shown in Figure 1a, here for n = 16. Then Figure 1b shows a

possible situation with a 0-1-sequence. Each of its two sorted halves starts with some 0's (white) and ends with
some 1's (gray).

K

2|3 x|
4|5]]
g7] <L
g3 «]
0] 11]

1213 w]
14|15 x|

(a) (b) (c) (d) (&)

http://www iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oemen.htm 1/4

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/sortieren.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oem.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/merge/mergen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/nulleinsen.htm

2/19/2015 Odd-even mergesort

Figure 1: Situations during execution of odd-even merge

In the left column the even subsequence is found, i.e. all a; with i even, namely ag, ao, a4 etc.; in the right column
the odd subsequence is found, i.e. all @; with i odd, namely a4, as, as etc. Just like the original sequence the even
as well as the odd subsequence consists of two sorted halves.

By induction hypothesis, the left and the right column are sorted by recursive application of odd-even merge(n/2)
in step 1 of the algorithm. The right column can have at most two more 1's than the left column (Figure 1c).

After performing the comparisons of step 2 of the algorithm (Figure 1d), in each case the array is sorted (Figure
1e).

Analysis

Let 7(n) be the number of comparisons performed by odd-even merge(n). Then we have for n>2
T(n) = 2:T(n/2) + n/2-1.

With 7(2) = 1 we have
T(n) = n/2 - (log(n)-1) + 1 € O(n-log(n)).

Sorting algorithm

By recursive application of the merge algorithm the sorting algorithm odd-even mergesort is formed.

Algorithm odd-even mergesort(n)

Input: sequence day, ..., d,.1 (n a power of 2)
Output: the sorted sequence
Method: if n>1 then

1. apply odd-even mergesort(n/2) recursively to the two halves ay, ..., ;0.4 and
a2, ---, Ay-1 of the sequence;

2. odd-even merge(n);

Figure 2 shows the odd-even mergesort network for n = 8.

-l & bh B W k2 o~ O
— e e e
.‘_

Figure 2: Odd-even mergesort forn = 8

http://www iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oemen.htm

2/4

2/19/2015 Odd-even mergesort

The number of comparators of odd-even mergesort is in O(n Iog(n)z).

Program

An implementation of odd-even mergesort in Java is given in the following. The algorithm is encapsulated in a
class OddEvenMergeSorter. Its method sort passes the array to be sorted to array a and calls function
oddEvenMergeSort.

Function oddEvenMergeSort recursively sorts the two halves of the array. Then it merges the two halves with
oddEvenMerge.

Function oddEvenMerge picks every 2r-th element starting from position /o and lo+r, respectively, thus forming the
even and the odd subsequence. According to the recursion depth 7is 1, 2, 4, 8,

With the statements

Sorter s=new OddEvenMergeSorter () ;
s.sort (b);

an object of type OddEvenMergeSorter is created and its method sort is called in order to sort array b. The length
n of the array must be a power of 2.

public class OddEvenMergeSorter implements Sorter
{
private int[] a;

public void sort (int[] a)
{

this.a=a;

oddEvenMergeSort (0, a.length);
}

/** sorts a piece of length n of the array
* starting at position lo
*/
private void oddEvenMergeSort (int lo, int n)
{
if (n>1)
{
int m=n/2;
oddEvenMergeSort (lo, m);
oddEvenMergeSort (lo+m, m);
oddEvenMerge (lo, n, 1);

}

/** lo is the starting position and
* n is the length of the piece to be merged,
* r is the distance of the elements to be compared
*/

private void oddEvenMerge (int lo, int n, int r)

{

int m=r*2;

if (m<n)

{
oddEvenMerge (lo, n, m); // even subsequence
oddEvenMerge (lo+r, n, m); // odd subsequence

for (int i=lo+r; i+r<lo+n; i+=m)
compare (i, i+r);
}

else

http://www iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oemen.htm 3/4

2/19/2015 Odd-even mergesort

compare (lo, lo+r);

}

private void compare (int i,

{

int 7J)

if (ali]>alj])
exchange (i, Jj);
}

private void exchange(int i, int j)
{
int t=ali];
alil=aljl;
aljl=t;
}
} // end class OddEvenMergeSorter
Conclusions

There are other sorting networks that have a complexity of O(n log(n)?), too, e.g. bitonic sort and shellsort.
However, odd-even mergesort requires the fewest comparators of these. The following table shows the number of
comparators for n = 4, 16, 64, 256 and 1024.

odd-even
n| mergesort| bitonic sort| shellsort
4 5 6 6
16 63 80 83
64 543 672 724
256 3839 4608 5106
1024 24063 28160 31915

Exercise 1: Give the exact formula for 7(n), the number of comparators of odd-even mergesort. Check your
formula by comparing its results with the entries in the table above.

References
[Bat 68]

K.E. BatcHer: Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf.,,

Vol. 32, 307-314 (1968)

[Sed 03]

Next:

HW. Lang FH Flensburg lang@fh-flensburg.de Impressum © Created: 31.01.1998 Updated: 18.05.2010

http://www iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/oemen.htm

[Bitonic sort] or

R. Seobcewick: Algorithms in Java, Parts 1-4. 3rd edition, Addison-Wesley (2003)

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/indexen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
mailto:lang@fh-flensburg.de
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www.iti.fh-flensburg.de/lang/indexen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm
http://www.iti.fh-flensburg.de/lang/impressum.htm
http://www.fh-flensburg.de/

