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Introduction 

Fourier Transform plays an important role in signal processing, image processing and 

voice recognition and so on. It has been using for wide range of areas. It may be used for 

people’s life, and it may be used for scientific research as well. The Fourier Transform 

has many applications in science and engineering. For example, it is often used in digital 

signal processing applications such as signal processing, voice recognition and image 

processing. The Discrete Fourier Transform is a specific kind of Fourier Transform. It 

maps a sequence over time to another sequence over frequency. However, if the Discrete 

Fourier Transform is implemented straightforward, the time complexity is O(n
2
). It is not 

a better way to be used in practice. Alternatively, the Fast Fourier Transform is just O(n 

log n) algorithm to perform the Discrete Fourier Transform which can be easily 

parallelized as well. 

 

Fourier analysis 

Fourier analysis is the representation of continuous function by a potentially infinite 

series of sin and cosine functions. It is grown out of the study of Fourier series. The 

Fourier series is a function which can be expressed as the sum of a series of sins and 

cosines.  
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The numbers an and bn are called Fourier coefficients of f. so, infinite sum f(x) is called 

the Fourier series of f. Fourier series can be generalized to complex numbers, and further 

generalized to derive the Fourier Transform. 

 

Fourier Transform 

The Fourier Transform is defined by the expression: 

Forward Fourier Transform: 

 

 

Inverse Fourier Transform: 

 

 

Note:  

The equation defines F(k), the Fourier Transform of f(x). f(x) is termed a function of the 

variable time and F(k) is termed a function of the variable frequency. 

Fourier Transform actually maps a time domain (series) into the frequency domain 

(series). So, the Fourier Transform is often called the frequency domain. Inverse Fourier 

Transform maps the domain of frequencies back into the corresponding time domain. The 

two functions are inverses of each other.  

Frequency domain ideas are important in many application areas, including audio, signal 

processing and image processing. For example, spectrum analysis is widely used to 

analyzed speech, compress images, and search for periodicities in a wide variety of data 

in biology, physics and so on. Particularly, JPEG compression algorithm which are 

widely used and very effective, use a version of the Fourier Cosine Transform to 

compress the image data.  

However, the Fourier transform is not suitable for machine computation because infinity 

of samples have to be considered. There is an algorithm called Discrete Fourier 

Transform, which is modified based on the Fourier Transform, can be used for machine 

computation. 
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Discrete Fourier Transform 

The Discrete Fourier Transform is a specific kind of Fourier Transform. It requires an 

input function that is discrete and whose non-zero values have a finite duration. The input 

function can be a finite sequence of real or complex numbers, thus the DFT is ideal for 

processing information stored in computers. But, if the data is continuous, the data has to 

be sampled when we use the DFT. There is a possibility that if the sampling interval is 

too wide, it may cause the aliasing effect, however, if it’s too narrow, the size of the 

digitalized data might be increased. The definition is expressed in the following. 

Given a sequence of fn for k = 0,1,2, …, N – 1, is transformed into the sequence of Xk  by 

the DFT according to the formula: 

 

 

The inverse DFT is given by: 

 

 

Where                                                                                    is a primitive Nth root or unity. 

 

DFT Computation 

Given n elements vector x, the DFT Matrix vector product Fnx, where fi,j = wn
ij
 for 0 <= I, 

j < n. The following examples are done based on formula above and DFT Matrix. 

Examples of DFT computation: 

 DFT of vector (2, 3), the primitive square root of unity for w2 is -1. 

 

 

 The inverse of DFT: 
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 DFT of vector (1, 2, 4, 3), the primitive 4th root of unity for w4 is i. 

 

 

 The inverse of DFT: 

 

 

 

 

 

Fast Fourier Transform 

As the time complexity of DFT for n samples is O (n
2
) if the DFT is implemented 

straightforward. So, using DFT is not a best way in practice. There is an improved 

algorithm called Fast Fourier Transform (FFT) which produces exactly the same 

result as the DFT. It uses divide – and – conquer strategy. So, it only takes O(n log n) 

time  to compute n samples. The only difference between DFT and FFT is that FFT 

is much faster than DFT. It can be thought as a fast version of DFT. 

The idea is that keep dividing a DFT sequence of N samples into two sub sequence. 

It splits the even index and odd index each step. If N is a power of 2, it keeps 

splitting the sequence until each subsequence only has one element. The rearranged 

index is just the bit-reversed order as the original index. 
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We can rewrite DFT function as follows: 

 

  

 

 

So, for example, 16 points, we have log2 N steps which is 4 steps and each has N 

operations. Finally the time complexity is O(N log N). 
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Use example in the Discrete Fourier Transform section to re-do it with FFT. The 

diagram is shown below. 

 

 

Parallel Fast Fourier Transform 

When parallelize the FFT algorithm, we have to consider that which algorithm is 

suitable for implementing the FFT. The recursive way for the FFT algorithm is easy 

to implement. However, there are two reasons for using an iterative way for FFT 

algorithm. First, iterative version of the FFT algorithm can perform fewer index 

computations. Second, it is easier to derive a parallel FFT algorithm when the 

sequential algorithm is in iterative form. As we may already know that the output 

index is the bit-reversed as the input index. So, use this idea to rearrange the index. 

The following graph shows the process for parallel Fast Fourier Transform: 
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Top sequence is input and bottom sequence is output. Each process is represented by 

a gray rectangle. 

There are three phrases for the parallel algorithm. Assume n is number of elements, 

and p is number of processes. First, the processes permute the input sequence a, 

rearrange the indices. In the second phrase, the processes perform the first log n – 

log p iterations of the FFT by performing the required multiplications, additions and 

subtraction on complex numbers. In the third phase the processes perform the final 

log p iterations of the FFT, and swapping values with partner across hypercube 

dimension. 

So, each process controls n/p elements of input sequence a. There are log p iterations 

in which each process swaps about n/p values with a partner process. The overall 

communication time complexity is O ((n/p) log p), and the computational 

complexity of the parallel algorithm is O (n log n/p). 
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