
159.735 Studies in Parallel and Distributed System

Parallel Fast Fourier Transform

 Name: Bo LIU

ID: 03278999

Parallel Fast Fourier Transform

Page 2

Introduction

Fourier Transform plays an important role in signal processing, image processing and

voice recognition and so on. It has been using for wide range of areas. It may be used for

people’s life, and it may be used for scientific research as well. The Fourier Transform

has many applications in science and engineering. For example, it is often used in digital

signal processing applications such as signal processing, voice recognition and image

processing. The Discrete Fourier Transform is a specific kind of Fourier Transform. It

maps a sequence over time to another sequence over frequency. However, if the Discrete

Fourier Transform is implemented straightforward, the time complexity is O(n
2
). It is not

a better way to be used in practice. Alternatively, the Fast Fourier Transform is just O(n

log n) algorithm to perform the Discrete Fourier Transform which can be easily

parallelized as well.

Fourier analysis

Fourier analysis is the representation of continuous function by a potentially infinite

series of sin and cosine functions. It is grown out of the study of Fourier series. The

Fourier series is a function which can be expressed as the sum of a series of sins and

cosines.

Where n = 1, 2, 3 …

∑ ∑
∞

=

∞

=

++=

1 1

0)sin()cos(
2

1
)(

n n

nn nxbnxaaxf

∫
−

=

π

ππ

dxxfa)(
1

0 ∫
−

=

π

ππ

dxnxxfan)cos()(
1

∫
−

=

π

ππ

dxnxxfbn)sin()(
1

Parallel Fast Fourier Transform

Page 3

The numbers an and bn are called Fourier coefficients of f. so, infinite sum f(x) is called

the Fourier series of f. Fourier series can be generalized to complex numbers, and further

generalized to derive the Fourier Transform.

Fourier Transform

The Fourier Transform is defined by the expression:

Forward Fourier Transform:

Inverse Fourier Transform:

Note:

The equation defines F(k), the Fourier Transform of f(x). f(x) is termed a function of the

variable time and F(k) is termed a function of the variable frequency.

Fourier Transform actually maps a time domain (series) into the frequency domain

(series). So, the Fourier Transform is often called the frequency domain. Inverse Fourier

Transform maps the domain of frequencies back into the corresponding time domain. The

two functions are inverses of each other.

Frequency domain ideas are important in many application areas, including audio, signal

processing and image processing. For example, spectrum analysis is widely used to

analyzed speech, compress images, and search for periodicities in a wide variety of data

in biology, physics and so on. Particularly, JPEG compression algorithm which are

widely used and very effective, use a version of the Fourier Cosine Transform to

compress the image data.

However, the Fourier transform is not suitable for machine computation because infinity

of samples have to be considered. There is an algorithm called Discrete Fourier

Transform, which is modified based on the Fourier Transform, can be used for machine

computation.

∫
∞

∞−

−

= dkexfkF
ikxπ2)()(

∫
∞

∞−

= dkekFxf
ikxπ2)()(

)sin()cos(xixe
xi

+=

Parallel Fast Fourier Transform

Page 4

Discrete Fourier Transform

The Discrete Fourier Transform is a specific kind of Fourier Transform. It requires an

input function that is discrete and whose non-zero values have a finite duration. The input

function can be a finite sequence of real or complex numbers, thus the DFT is ideal for

processing information stored in computers. But, if the data is continuous, the data has to

be sampled when we use the DFT. There is a possibility that if the sampling interval is

too wide, it may cause the aliasing effect, however, if it’s too narrow, the size of the

digitalized data might be increased. The definition is expressed in the following.

Given a sequence of fn for k = 0,1,2, …, N – 1, is transformed into the sequence of Xk by

the DFT according to the formula:

The inverse DFT is given by:

Where is a primitive Nth root or unity.

DFT Computation

Given n elements vector x, the DFT Matrix vector product Fnx, where fi,j = wn
ij
 for 0 <= I,

j < n. The following examples are done based on formula above and DFT Matrix.

Examples of DFT computation:

 DFT of vector (2, 3), the primitive square root of unity for w2 is -1.

 The inverse of DFT:

∑
−

=

−

=

1

0

2N

n

kn
N

i

nk efX

π

∑
−

=

=

1

0

2
1 N

k

kn
N

i

kn eX
N

f

π

−

=

−

=

××

××

1

5

3

2

11

11

1

0

11

2

01

2

10

2

00

2

x

x

ww

ww

=

−

−

=

××

××

3

2

1

5

11

11

2

1

1

0

11

2

01

2

10

2

00

2

x

x

ww

ww

)/2sin()/2cos(

2

NiNew N

i

n ππ

π

+==

Parallel Fast Fourier Transform

Page 5

 DFT of vector (1, 2, 4, 3), the primitive 4th root of unity for w4 is i.

 The inverse of DFT:

Fast Fourier Transform

As the time complexity of DFT for n samples is O (n
2
) if the DFT is implemented

straightforward. So, using DFT is not a best way in practice. There is an improved

algorithm called Fast Fourier Transform (FFT) which produces exactly the same

result as the DFT. It uses divide – and – conquer strategy. So, it only takes O(n log n)

time to compute n samples. The only difference between DFT and FFT is that FFT

is much faster than DFT. It can be thought as a fast version of DFT.

The idea is that keep dividing a DFT sequence of N samples into two sub sequence.

It splits the even index and odd index each step. If N is a power of 2, it keeps

splitting the sequence until each subsequence only has one element. The rearranged

index is just the bit-reversed order as the original index.

+−

−−

=

−−

−−

−−

=

i

i

ii

ii

x

x

x

x

wwww

wwww

wwww

wwww

3

0

3

10

3

4

2

1

11

1111

11

1111

3

2

1

0

9

4

6

4

3

4

0

4

6

4

4

4

2

4

0

4

3

4

2

4

1

4

0

4

0

4

0

4

0

4

0

4

+−

−−

−−

−−

−−

=

−−−

−−−

−−−

i

i

ii

ii

x

x

x

x

wwww

wwww

wwww

wwww

3

0

3

10

11

1111

11

1111

4

1

4

1

3

2

1

0

9

4

6

4

3

4

0

4

6

4

4

4

2

4

0

4

3

4

2

4

1

4

0

4

0

4

0

4

0

4

0

4

=

=

3

4

2

1

12

16

8

4

4

1

Parallel Fast Fourier Transform

Page 6

We can rewrite DFT function as follows:

So, for example, 16 points, we have log2 N steps which is 4 steps and each has N

operations. Finally the time complexity is O(N log N).

∑
−

=

−

=

1

0

N

n

kn

Nnk wfX ∑∑
−

=

+−

+

−

=

−

+=

12/

0

)12(

12

12/

0

2

2

N

n

nk

Nn

N

n

kn

Nn wfwf

∑∑
−

=

−

−

=

−

+=

12/

0

2/

12/

0

2/

N

n

kn

N

odd

n

k

N

N

n

kn

N

even

n wfwwf

Parallel Fast Fourier Transform

Page 7

Use example in the Discrete Fourier Transform section to re-do it with FFT. The

diagram is shown below.

Parallel Fast Fourier Transform

When parallelize the FFT algorithm, we have to consider that which algorithm is

suitable for implementing the FFT. The recursive way for the FFT algorithm is easy

to implement. However, there are two reasons for using an iterative way for FFT

algorithm. First, iterative version of the FFT algorithm can perform fewer index

computations. Second, it is easier to derive a parallel FFT algorithm when the

sequential algorithm is in iterative form. As we may already know that the output

index is the bit-reversed as the input index. So, use this idea to rearrange the index.

The following graph shows the process for parallel Fast Fourier Transform:

Parallel Fast Fourier Transform

Page 8

Top sequence is input and bottom sequence is output. Each process is represented by

a gray rectangle.

There are three phrases for the parallel algorithm. Assume n is number of elements,

and p is number of processes. First, the processes permute the input sequence a,

rearrange the indices. In the second phrase, the processes perform the first log n –

log p iterations of the FFT by performing the required multiplications, additions and

subtraction on complex numbers. In the third phase the processes perform the final

log p iterations of the FFT, and swapping values with partner across hypercube

dimension.

So, each process controls n/p elements of input sequence a. There are log p iterations

in which each process swaps about n/p values with a partner process. The overall

communication time complexity is O ((n/p) log p), and the computational

complexity of the parallel algorithm is O (n log n/p).

Parallel Fast Fourier Transform

Page 9

Reference

Quinn, M.J., (2004). Parallel programming in C with MPI and OpenMP.

New York: McGraw-Hill Higher Education.

Gray, R.M., & Goodman, J.W., (1995). Fourier transforms: an

introduction for engineers. Boston: Kluwer Academic Publishers.

Brigham, E.O., (1988). The fast Fourier transform and its applications.

Englewood Cliffs, N,J.: Prentice Hall.

Chu, E., & George, A., (1999). Inside the FFT black box: serial and

parallel fast Fourier transform algorithms. Boca Raton, Fla.: CRC Press.

