[Note: The most recent updates, if any, highlighted]

 

CS 1120 – COMPUTER SCIENCE II   (with C#)

 Fall 2010

(prepared by Dr. L. Lilien)

Department of Computer Science

Western Michigan University

 

Instructor

Name:

 

Office:

Office Hours:

 

 

Lectures :

 

Home page:

Email:

Dr. Leszek T. Lilien

 

B-249

T 1:00 pm – 2 :00 pm

R 4 :00 pm – 5 :00 pm

 

C-224, TR 10:00 am  – 11:15 am

 

http://www.cs.wmich.edu/~llilien

llilien@cs.wmich.edu

Course web page:

Lecture slides, etc.:                       

http://www.cs.wmich.edu/~llilien/teaching/2010fall/cs1120

http://www.cs.wmich.edu/~llilien/teaching/2010fall/cs1120/_downloads

Other Section  Instructor(s)

Name:

Home page:     

Course web page:  

Dr. Wuwei Shen

http://www.cs.wmich.edu/~wwshen

http://www.cs.wmich.edu/~wwshen/cs1120.html

Lab TAs

Name:           

  

Office:

Office Hours:

 

 

Lab:

 

Email:

Lab Web page:

Mr. Bilal Abu Bakr

 

C-210

M  8:30 am - 10:30 am

R   8:30 am - 10:30am

 

C-224, W 8:30am - 10:20pm (CRN 40497)

 

bilal.abubakr@wmich.edu

http://homepages.wmich.edu/~b4abubak/Syllabus/Syllabus1.html

Name:

 

Office:

Office Hours:  

 

 

Lab:

 

Email:

Lab Web page:

Mr. Jeremy Doornbos

 

C-210

T  3:00 pm - 5:00 pm

F  8:30 am - 10:30 am

 

C-224, W 12:30pm - 2:20pm  (CRN 40498)

 

jeremy.r.doornbos@wmich.edu

http://www.cs.wmich.edu/~jrdoornb/CS1120Lab

C# Programming Tutor for CS3310/1120/1110

Name:

 

Office:   

Office Hours:  

 

Note:

 

Mr. Chris Atkinson

 

C-208

T 11:30 am -1:30 pm

R 11:30 am -1:30 pm

 

The tutor  will not know what the students' assignment is, but will help them with C#, debugging strategies, understanding what they're supposed to do (if they bring in their program specs), etc.

 

** IMPORTANT *** Email guidelines for  L. Lilien

Replies to messages that do not conform to the following requirements might be delayed or missing (e.g., due to automatic classification of the message as junk mail):

a)   The message should be sent from a WMU account - ending with “wmich.edu” (of course, this includes accounts ending with “cs.wmich.edu”).

b)   The message should have a descriptive subject with the indicated prefix:

  CS1120-F10--<your last name>: <descriptive subject>

For example, the subject of a message sent by John Smith should be as follows (no acute brackets in the actual subject):

CS1120-F10--Smith: sick and absent

c)   If any files are attached, they should be scanned with up-to-date anti-viral software, and the message including them should contain the following statement (no acute brackets in the actual subject):

I have scanned the enclosed file(s) with <name

of software and its version>, which was

last updated on <date>

     where <date> should be today’s date. (You should have the habit of updating

your anti-viral software daily!)

Catalog Description of CS 1120

This is the standard Computer Science II course using the C# computer language. The emphasis is on designing and programming object-oriented computer solutions to problems, as well as on the data structures used for this purpose. An introduction to the analysis of algorithms is made. Students must register for both a lecture section and a laboratory section.

Prerequisites

By Courses: CS1110 – Computer Science I or equivalent with a grade of C or better (prerequisite); Math1220 or Math 2000 (co-requisite)

 

By Topic: Basic concepts of high-level language programming – conditional structures; looping structures; arrays; program logic –  to solve problems; Basics of object oriented programming - be able to create and use elementary objects; C# language for both procedural and introductory object oriented programming; Basics of the software life cycle; Validating quality of software produced; Introductory sorting and searching algorithms; Algorithms for elementary problem solutions; Documenting programs effectively and efficiently.

Objectives

Learn about various phases of the software life cycle

Understand the concepts of classes and object oriented programming

Understand the concept of recursion and structured programming

Learn basic mathematical techniques for analyzing algorithm complexity

Learn common data structures

Learn and use version control and documentation tools

Learn about unit testing/function testing

Learning Outcomes

Be able to write well-structured and well-documented C# programs

Be able to use recursive solutions for recursive problems

Be able to program various searching (linear, binary) and sorting (merge, quick) algorithms and be able to analyze their efficiencies

Be able to design, create and use class and object hierarchies

Be able to use method or operator overloading

Be able to design complex data structures—including two-dimensional arrays (tables), linked list, stacks and queues. Also, be able to use collections or generics to perform operations on these data structures

Be able to work in a pair or team programming environment

Text (required)

H. M. Deitel & P. J. Deitel, Visual C# 2008. How to Program. Third Edition. Pearson Prentice Hall, Upper Saddle River, NJ, 2006. ISBN: 013605322X

http://www.deitel.com/Books/CSharp/VisualCSharp2008HowtoProgram3e/tabid/2933/Default.aspx

 

Note: Your CS1100 textbook (J. Lewis, C# 2008 Software Solutions, ISBN: 0-321-26716-8) might be helpful for some topics, so you might consider not selling it yet.)

Grading

During the term there will be two in-class midterm exams and a final examination. Laboratory assignments will be given in the regularly scheduled laboratory.  Pop-quizzes may be given at anytime in lab or lecture without prior notification. Your grade will be computed from your performance on these components using the following weights:

Midterm Exam 1                                                                    15%

(Date/time/room TBA)

Midterm Exam 2                                                                    15%

(Date/time/room TBA)

Final Exam                                                                             20%

 (Date/time/room TBA)

Labs                                                                                         40%

Lab quizzes & pop quizzes                                                    10%

PMT (Programming Skills Mastery Test – more below)                       0%

      (PMT:  TBA.)

(Last-chance PMT: tentative: TBA)

The following basic grading scale will be used:          

A – 90; BA – 85; B – 80; CB – 75; C – 70; DC – 65; D –60.

(I may curve very tough exams to the students’ benefit in order to improve the letter grades.)

 

Missed Exams

If you miss an exam (a Midterm Exam or the Final Exam), the decision as to whether or not it is made up and how it is made up will be made on an individual basis. To be excused there must be significant circumstances beyond the student’s control.  Generally this will require documentation, such as a doctor’s note in the case of an illness.   Normally, if your absence from an exam is excused, you will have to take a make up exam. Contact the instructor asking for a make up exam as soon as it is possible (if possible inform the instructor even before the exam that you will miss).

Laboratory

Students taking this course are required to register for a lab section.  Lab grades are based on student performance on programming assignments and quizzes.  Additionally, the Programming Skills Mastery Test (PMT) is given in lab.

Programming Assignments

Lab assignments will be given on a regularly scheduled basis.  Many of these assignments will need to be worked on outside of the regular scheduled labs. 

Each assignment will have a due date/time.  For each day an assignment is late, 5% of the total possible points for the assignment will be deducted.  (If an assignment is more than 20 days late, it is no longer worth any points.)  Weekends and holidays are all counted when calculating lateness.  No assignments may be submitted after 11:59 PM on the day preceding the last day of the classes (before the Final Exam Week).  By this time all work should be complete and submitted.

Quizzes

There will be regular quizzes given in the lab. Additionally, pop-quizzes may be given at anytime in the labs or lectures without prior notification.  If you miss a quiz for any reason, you will receive a 0 on it.

PMT

During the last lab session of the semester, students will be given the Programming Skills Mastery Test (PMT).  The test will consist of a short programming problem.  Students must program the solution in an essentially complete and correct form in the allotted time.  This problem must be solved within the allotted time to earn a passing grade in the course.  Students that fail the PMT on their first attempt will be given the second, and last, chance with a different problem.

Special Policies

Producing competent programmers is a primary goal of this course, and therefore a minimum performance in lab is required for students to pass the course.

You must pass the lab with at least 60% of the total possible lab points in order to pass the course regardless of exam scores.

You should strive to complete all assignments.  In order to pass the laboratory, you may have at most two assignments incomplete.  Even if an assignment is so late that the credit would be 0, it can still satisfy the completeness policy if it is completed and submitted.

You must pass the PMT to pass the course.

Use of Electronic Devices

To fully benefit from lectures and labs, you are expected to stay alert and pay attention to the directions/announcements in the class. Cellphones, PDAs, and other electronic devices should NOT be used during the lecture and should be turned-off. If available, please do bring your laptop to the class. Email checking or web-surfing of non-course related material is NOT permitted during the class. You may surf the web only when specifically told to do so. In order to maintain the integrity of the classroom and if I feel it is distracting you or others, I may ask you to turn-off your laptop.

Incomplete Grades

Please note that the incomplete grade - I - is intended for the student who has missed a relatively small portion of work due to circumstances beyond his/her control.  In general, performance on work done must be at a level of C or better in order to qualify for an incomplete.  An I grade will not be given to replace an otherwise low or failing grade in the class. 

 

Academic Honesty

The following statement has been approved and distributed by the Western Michigan University Faculty Senate: 

You are responsible for making yourself aware of and understanding the policies and procedures in the Undergraduate and Graduate Catalogs that pertain to Academic Honesty. These policies include cheating, fabrication, falsification and forgery, multiple submission, plagiarism, complicity and computer misuse. [The policies can be found at http://catalog.wmich.edu under Academic Policies, Student Rights and Responsibilities.] If there is reason to believe you have been involved in academic dishonesty, you will be referred to the Office of Student Conduct. You will be given the opportunity to review the charge(s). If you believe you are not responsible, you will have the opportunity for a hearing. You should consult with your instructor if you are uncertain about an issue of academic honesty prior to the submission of an assignment or test.

We also encourage you to browse http://osc.wmich.edu and www.wmich.edu/registrar to access the Code of Honor and general academic policies on such issues as diversity, religious observance, student disabilities, etc.

Unless otherwise told, you may not bring aids to exams.  Submission of another person’s work in part or whole is not permitted. Learning can certainly occur with discussion of class material and assignments with other students, and we will be doing considerable collaborative activity, but at all times take care that you don’t represent the work of another as your own. 

If you are copying another’s work in part or whole, either by hand or electronically, you are going too far. 

If two or more people are working so closely together that the outcomes, particularly on significant portions of computer programs, are essentially line-by-line the same in logical structure, they are going too far.

You should not give your completed work to someone else or accept another’s completed work to “review or look at” in either hardcopy or electronic form.  This too easily facilitates copying. 

Easy availability of information, material, source codes, lecture notes etc on the Internet may make it possible to find solutions to your assignments on the Internet or elsewhere. It is okay to refer to those, understand them and use them to enhance your solutions, generate your own ideas etc. However, you must give proper and full credit to original authors of the work, if you include their ideas and/or solutions. Failing to do so is part of academic and professional dishonesty. It will not be tolerated in this class. Do not give in to temptations.

A student found responsible for violation of academic honesty in the course, will receive a course penalty up to and including an E grade for the class. (Note that the Office of Student Conduct can impose additional penalties.)

Course Topics

Coding Standards
Declarations vs. definitions; Headers and code; Modular; Object-oriented

Compilation Process
Preprocessor; Compilation; Linking

Recursion

Searching; Sorting

Classes
What is a class? Terminology: objects, classes, instances; Examples of classes from modeling; Member functions/methods; Member variables; Access functions (& pass by reference); Constructors (and destructors); Scope; Constant/static objects, functions; Static members

Operator Overloading
Why overload? How overloading works; Operators; Unary and binary arithmetic operators; Comparison operators

Inheritance

      Has-a vs. is-a designs; Access:  public, private, and protected; Abstract base classes; Virtual functions; Late binding

Stream I/O
Stream classes and objects; Basic operations on streams; Read(), ReadLine(), etc.; Using text files

Data Structures

Arrays, linked lists, stacks, queues; Generics / Collections

Tools
Debugger; Version Control; Documentation

Concepts

Modular Program Design
Abstraction - functional and data; Problem statements; Producing a basic design document; Moving from design to code

Recursion
Recursive functions: factorial and fibonacci; Recursive algorithms: towers-of-Hanoi, binary search, merge sort, quick sort; Problem-solving and traversing search spaces

Array Data Structures
Arrays of objects; Dynamic arrays

Linked Lists
Insertion: beginning, middle, end; Deletion: beginning, middle, end; LL as a modeling tool (trains, etc.)

Stacks
Uses and push/pop; Implementation as a LL; Sample Algorithms: postfix, delimiter match

Queues
Uses and enqueue/dequeue; Sample algorithms: palindromes, network packet queues, simulation

Program Analysis
Analytic vs. experimental methods; Big-O concepts; Basic code analysis: loop structures; Analysis of bubble, insertion, and selection sorts; Analysis of binary search, quicksort, and mergesort

Algorithms
Linear and binary search; Bubble, insertion, selection, quick, and merge sorts; Postfix evaluation; Reversing linked lists; Palindrome recognition

 

Dates of Interest

Source: Academic Calendar 2009-2010 at:

http://www.wmich.edu/registrar/calendars/AC-2010-11.html

Note: Calendars are subject to change. Dates and events are added or changed as information becomes available.

 

                                                                                                                          Last updated on  9/8/10 (by L. Lilien)