Convolutional Codes

- Generates redundant bits continuously
- Error checking and correcting carried out continuously
- \((n, k, K)\) code
 - Input processes \(k\) bits at a time
 - Output produces \(n\) bits for every \(k\) input bits
 - \(K\) = constraint factor
 - \(k\) and \(n\) generally very small
- \(n\)-bit output of \((n, k, K)\) code depends on:
 - Current block of \(k\) input bits
 - Previous \(K-1\) blocks of \(k\) input bits

Decoding

- Trellis diagram – expanded encoder diagram
- Viterbi code – error correction algorithm
 - Compares received sequence with all possible transmitted sequences
 - Algorithm chooses path through trellis whose coded sequence differs from received sequence in the fewest number of places
 - Once a valid path is selected as the correct path, the decoder can recover the input data bits from the output code bits

Figure 8.9 Convolutional Encoder with \((n, k, K) = (2, 1, 3)\)
Automatic Repeat Request

- Mechanism used in data link control and transport protocols
- Relies on use of an error detection code (such as CRC)
- Flow Control
- Error Control

Turbo Coding

- Used for 3G wireless systems
- Exhibit performance close to Shannon’s limit (wrt bit error probability)
- Refer to Figures 8.13, 8.14 and 8.15

Flow Control

- Assures that transmitting entity does not overwhelm a receiving entity with data
- Protocols with flow control mechanism allow multiple PDUs in transit at the same time
- PDUs arrive in same order they’re sent
- Sliding-window flow control
 - Transmitter maintains list (window) of sequence numbers allowed to send
 - Receiver maintains list allowed to receive
- Reasons for breaking up a block of data before transmitting:
 - Limited buffer size of receiver
 - Retransmission of PDU due to error requires smaller amounts of data to be retransmitted
 - On shared medium, larger PDUs occupy medium for extended period, causing delays at other sending stations
Flow Control

Mechanisms to detect and correct transmission errors

Types of errors:
- Lost PDU: a PDU fails to arrive
- Damaged PDU: PDU arrives with errors

Error Control Requirements

- Error detection
 - Receiver detects errors and discards PDUs
- Positive acknowledgement
 - Destination returns acknowledgment of received, error-free PDUs
- Retransmission after timeout
 - Source retransmits unacknowledged PDU
- Negative acknowledgement and retransmission
 - Destination returns negative acknowledgment to PDUs in error

Go-back-N ARQ

- Acknowledgments
 - RR = receive ready (no errors occur)
 - REJ = reject (error detected)
- Contingencies
 - Damaged PDU
 - Damaged RR
 - Damaged REJ

![Figure 8.17 Sliding-Window Depiction](image)