Interior Gateway Protocols (RIP and OSPF)

What is Routing?

- To ensure information is delivered to the correct destination at a reasonable level of performance
- Forwarding
 - Given a forwarding table, move information from input ports to output ports of a router
 - Local mechanical operations
- Routing
 - Acquires information in the forwarding tables
 - Requires knowledge of the network
 - Requires distributed coordination of routers
Viewing Routing as a Policy

- Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision
- What are some possible policies?
 - Shortest path (RIP, OSPF)
 - Most load-balanced
 - QoS routing (satisfies app requirements)
 - etc

Internet Routing

- Internet topology roughly organized as a two level hierarchy
- First lower level – autonomous systems (AS’s)
 - AS: region of network under a single administrative domain
- Each AS runs an intra-domain routing protocol
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Possibly others

- Second level – inter-connected AS’s
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4
Why Need the Concept of AS or Domain?

- Routing algorithms are not efficient enough to deal with the size of the entire Internet
- Different organizations may want different internal routing policies
- Allow organizations to hide their internal network configurations from outside
- Allow organizations to choose how to route across multiple organizations (BGP)
- Basically, easier to compute routes, more flexibility, more autonomy/independence
Outline

- Two intra-domain routing protocols
- Both try to achieve the “shortest path” routing policy
- Quite commonly used

- OSPF: Based on Link-State routing algorithm
- RIP: Based on Distance-Vector routing algorithm

Intra-domain Routing Protocols

- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford algorithm
 - Each neighbor periodically exchange reachability information to its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra’s algorithm
 - Each router periodically floods immediate reachability information to other routers
 - Fast convergence, but high communication and computation overhead
Routing on a Graph

- Goal: determine a “good” path through the network from source to destination
 - Good often means the shortest path
- Network modeled as a graph
 - Routers → nodes
 - Link → edges
 - Edge cost: delay, congestion level,…

Link State Routing (OSPF): Flooding

- Each node knows its connectivity and cost to a direct neighbor
- Every node tells every other node this local connectivity/cost information
 - Via flooding
- In the end, every node learns the complete topology of the network
- E.g. A floods message

A connected to B cost 2
A connected to D cost 1
A connected to C cost 5
Flooding Details

- Each node periodically generates Link State Packet (LSP) contains
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live
- Flood is reliable
 - Use acknowledgement and retransmission
- Sequence number used to identify *newer* LSP
 - An older LSP is discarded
 - What if a router crash and sequence number reset to 0?
- Receiving node flood LSP to all its neighbors except the neighbor where the LSP came from
- LSP is also generated when a link’s state changes (failed or restored)

Peterson & Davie

- P.285
- …[the crashed node] will eventually receive a copy of its own LSP with a higher sequence number,…
Link State Flooding Example

Diagram of a network with labeled nodes and links.
Link State Flooding Example
A Link State Routing Algorithm

Dijkstra’s algorithm
- Net topology, link costs known to all nodes
 - Accomplished via “link state flooding”
 - All nodes have same info
- Compute least cost paths from one node (‘source’) to all other nodes
- Repeat for all sources

Notations
- \(c(i,j) \): link cost from node \(i \) to \(j \); cost infinite if not direct neighbors
- \(D(v) \): current value of cost of path from source to node \(v \)
- \(p(v) \): predecessor node along path from source to \(v \), that is next to \(v \)
- \(S \): set of nodes whose least cost path definitively known

Dijkstra’s Algorithm (A “Greedy” Algorithm)

1. **Initialization:**
 2. \(S = \{A\}; \)
 3. for all nodes \(v \)
 4. if \(v \) adjacent to \(A \)
 5. then \(D(v) = c(A,v) \);
 6. else \(D(v) = \infty \);
 7.

8. **Loop**
 9. find \(w \) not in \(S \) such that \(D(w) \) is a minimum;
 10. add \(w \) to \(S \);
 11. update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
 12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
 // new cost to \(v \) is either old cost to \(v \) or known
 // shortest path cost to \(w \) plus cost from \(w \) to \(v \)
 13. **until all nodes in \(S \);**
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>D(B),p(B)</td>
<td>4,D</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Initialization:**
 2. S = {A};
 3. for all nodes v
 4. if v adjacent to A
 5. then D(v) = c(A,v);
 6. else D(v) = ∞;

 ...
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v))\);
13. **until all nodes in S**;

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \(D(v) = \min(D(v), D(w) + c(w,v))\);
13. **until all nodes in S**;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \];
13 until all nodes in S;

Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent
to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \];
13 until all nodes in S;
Distance Vector Routing (RIP)

- What is a distance vector?
 - Current best known cost to get to a destination
- Idea: Exchange distance vectors among neighbors to learn about lowest cost paths

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
</tr>
</tbody>
</table>

Note no vector entry for C itself

At the beginning, distance vector only has information about directly attached neighbors, all other dests have cost ∞

Eventually the vector is filled

Distance Vector Routing Algorithm

- Iterative: continues until no nodes exchange info
- Asynchronous: nodes need not exchange info/iterate in lock steps
- Distributed: each node communicates only with directly-attached neighbors
- Each router maintains
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node $X \Rightarrow$ best known distance from X to Y, via Z as next hop

Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Distance Vector Routing

- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor: its least cost path change from neighbor to destination

- Each node notifies neighbors only when its least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:

- wait for (change in local link cost or msg from neighbor)
- recompute distance table
- if least cost path to any dest has changed, notify neighbors

Distance Vector Algorithm (cont’d)

1 *Initialization:*
2 for all neighbors V do
3 if V adjacent to A
4 D(A, V) = c(A,V);
5 else
6 D(A, V) = \infty;
7 loop:
8 wait (until A sees a link cost change to neighbor V or until A receives update from neighbor V)
9 if (D(A,V) changes by d)
10 for all destinations Y through V do
11 D(A,Y) = D(A,Y) + d
12 else if (update D(V, Y) received from V)
13 /* shortest path from V to some Y has changed */
14 D(A,Y) = D(A,V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever
Example: Distance Vector Algorithm

Initialization:

1. for all neighbors \(V \) do
2. if \(V \) adjacent to \(A \)
3. \(D(A, V) = c(A, V) \);
4. else
5. \(D(A, V) = \infty \);
6. \(D(A, V) = \infty \);

...
Example: 1st Iteration (B→A, C→A)

Node A

\[D(A,D) = D(A,B) + D(B,D) = 2 + 3 = 5 \]

\[D(A,C) = D(A,B) + D(B,C) = 2 + 1 = 3 \]

Node B

Node C

Node D

Example: End of 1st Iteration

Node A

Node B

Node C

Node D
Example: End of 2nd Iteration

<table>
<thead>
<tr>
<th>Node A</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node B</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Example: End of 3rd Iteration

<table>
<thead>
<tr>
<th>Node A</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node B</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node C</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node D</th>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Nothing changes \rightarrow algorithm terminates
Distance Vector: Link Cost Changes

<table>
<thead>
<tr>
<th>Node B</th>
<th>Node C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 A</td>
<td>A 1 A</td>
</tr>
<tr>
<td>C 1 B</td>
<td>C 1 B</td>
</tr>
</tbody>
</table>

Algorithm:

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (D(A,V) changes by d)
11 for all destinations Y through V do
12 D(A,Y) = D(A,Y) + d
13 else if (update D(V,Y) received from V)
14 D(A,Y) = D(A,V) + D(V,Y);
15 if (there is a new minimum for destination Y)
16 send D(A,Y) to all neighbors
17 forever

<table>
<thead>
<tr>
<th>Node B</th>
<th>Node C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 5 C</td>
<td>A 2 B</td>
</tr>
<tr>
<td>B 1 B</td>
<td>B 1 B</td>
</tr>
</tbody>
</table>

“good news travels fast”

Distance Vector: Count to Infinity Problem

<table>
<thead>
<tr>
<th>Node B</th>
<th>Node C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 A</td>
<td>A 6 C</td>
</tr>
<tr>
<td>C 1 B</td>
<td>C 1 B</td>
</tr>
</tbody>
</table>

Algorithm:

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (D(A,V) changes by d)
11 for all destinations Y through V do
12 D(A,Y) = D(A,Y) + d;
13 else if (update D(V,Y) received from V)
14 D(A,Y) = D(A,V) + D(V,Y);
15 if (there is a new minimum for destination Y)
16 send D(A,Y) to all neighbors
17 forever

<table>
<thead>
<tr>
<th>Node B</th>
<th>Node C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 5 B</td>
<td>A 7 B</td>
</tr>
<tr>
<td>B 1 B</td>
<td>B 1 B</td>
</tr>
</tbody>
</table>

“bad news travels slowly”

Link cost changes here; recall that B also maintains shortest distance to A through C, which is 6. Thus D(B,A) becomes 6!
Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C’s) distance to A is infinite (so B won’t route to A via C)
 - Will this completely solve count to infinity problem?

Link cost changes here: B updates $D(B, A) = 60$ as C has advertised $D(C, A) = \infty$

Algorithm terminates

Link State vs. Distance Vector

Per node message complexity
- **LS:** $O(e)$ messages; n – number of nodes; e – number of edges
- **DV:** $O(d)$ messages; where d is node’s degree

Complexity
- **LS:** $O(n^2)$ with $O(n^e)$ messages
- **DV:** convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

- **LS:**
 - node can advertise incorrect link cost
 - each node computes only its own table
- **DV:**
 - node can advertise incorrect path cost
 - each node’s table used by others; error propagate through network
Oscillations

- Assume link cost = amount of carried traffic

- How can you avoid oscillations?

Reference

- T. S. Eugene Ng Slides on Interior Gateway Protocols, Rice University