Switch Construction

Workstation-Based

- Aggregate bandwidth
 - 1/2 of the I/O bus bandwidth
 - capacity shared among all hosts connected to switch
 - example: 1Gbps bus can support 5 x 100Mbps ports (in theory)

- Packets-per-second
 - must be able to switch small packets
 - 300,000 packets-per-second is achievable
Switching Hardware

- **Design Goals**
 - Throughput (depends on traffic model)
 - Scalability (a function of n)

- **Ports**
 - Circuit management (e.g., map VCIs, switch datagrams)
 - Buffering (input and/or output)

- **Fabric**
 - As simple as possible
 - Sometimes do buffering (internal)

Buffering

- Wherever contention is possible
 - Input port (contend for fabric)
 - Internal (contend for output port)
 - Output port (contend for link)

- **Head-of-Line Blocking**
 - Input buffering
Switch Design

- Crossbar switches
- Banyan Networks
- Batcher Networks
- Sunshine Switch

Crossbar Switch

- Every input port is connected to every output port
 - $N \times N$
- Output ports
 - Complexity scales as $O(N^2)$
Crossbar Switch

Knockout Switch

- Assumption:
 - It is unlikely that N inputs will have packets destined for the same output port
 - Pick L from N packets at a port
 - Output port maintains L cyclic buffers
 - Shifter places up to L packets in one cycle
 - Each buffer gets only one packet
 - Output port uses round-robin between buffers
 - Arrival order is maintained
- Problem
 - Hot spots
- Output ports scale as $O(N)$
Knockout Switch

- Output port design
 - Packet filters
 - Recognize packets destined for a specific port
 - Concentrator
 - Selects up to L packets from those destined for this port
 - Discards excess packets
 - Queue
 - Length L

Choose L of N
Ex: 2 of 4

What happens if more than L arrive?
Discard

2x2 random selector
Delay unit
Self-Routing Fabrics

- Idea
 - Use source routing on “network” in switch
 - Input port attaches output port number as header
 - Fabric routes packet based on output port

- Types
 - Banyan Network
 - Batcher-Banyan Network
 - Sunshine Switch

Banyan Network

- A network of 2x2 switches
 - Each element routes to output 0 or 1 based on packet header
 - A switch at stage i looks at bit i in the header

[Diagram of Banyan Network]
Perfect Shuffle
- N inputs requires $\log_2 N$ stages of $N/2$ switching elements
- Complexity on order of $N \log_2 N$

Collisions
- If two packets arrive at the same switch destined for the same output port, a collision will occur
- If all packets are sorted in ascending order upon arrival to a banyan network, no collisions will occur!
Batcher Network

- Performs merge sort
- A network of 2x2 switches
 - Each element routes to output 0 or 1 based on packet header
 - A switch at stage i looks at the whole header
 - Two types of switches
 - Up switch
 - Sends higher number to top output (0)
 - Down switch
 - Sends higher number to bottom output (1)
Batcher Network

- How it really works
 - Merger is presented with a pair of sorted lists, one in ascending order, one in descending order
 - First stage of merger sends packets to the correct half of the network
 - Second stage sends them to the correct quarter

- Size
 - N/2 switches per stage
 - \(\log_2 N \times (1 + \log_2 N) / 2 \) stages
 - Complexity = \(N \log_2^2 N \)
Batcher-Banyan Network

- Idea
 - Attach a batcher network back-to-back with a banyan network
 - Arbitrary unique permutations can be routed without contention
 - Two packets destined for same output port still collide!

Batcher-Banyan Switch Architecture

- Simple components with no buffering.
 - filter eliminates duplicates by comparing consecutive addresses and returns ack to inputs
 - adder computes and inserts “rank” of cells
 - concentrator uses rank as output address
 - routing network delivers to output

- Adder, concentrator and routing network all have $\log_2 n$ stages (conc. is reverse banyan, routing net. is banyan)
Sunshine Switch

- Sunshine Switch
 - Like a knockout switch
 - Can handle up to L packets per output port
 - Recirculates overflow packets
 - If more than L packets arrive for any output port in one cycle

- Elements
 - Multiple Banyan networks
 - Enables multiple packets per output port
 - Delay Box
 - Excess (K) packets are recirculated and resubmitted to the switch
 - Batcher network
 - N new packets
 - K delayed packets
 - Trap
 - Identifies packets destined for banyan
 - Identifies excess packets
 - Selector
 - Routes multiple packets for same output on separate banyans

Sunshine Switch

- Batcher
- Trap
- Selector
- L Banyans

Inputs: n → Batcher → Trap → Selector → L Banyans
References