Domain Name System (DNS)

RFC 1034
RFC 1035
http://www.ietf.org
TCP/IP Protocol Suite

Application Layer
- DHCP
- DNS
- SNMP
- HTTP
- SMTP
- POP

Transport Layer
- UDP
- TCP

Network Layer
- ICMP
- IGMP

Link Layer
- ARP
- Ethernet/FastEthernet/802.11/PPP
DNS: Domain Name System

People: many identifiers:
- SSN, name, Passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., gaia.cs.umass.edu - used by humans

Q: map between IP addresses and name?

Domain Name System:
- *distributed database* implemented in hierarchy of many *name servers*
- *application-layer protocol* host, routers, name servers to communicate to *resolve* names (address/name translation)
 - note: core Internet function implemented as application-layer protocol
 - complexity at network’s “edge”
DNS name servers

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance
- doesn’t scale!

- no server has all name-to-IP address mappings
- local name servers:
 - each ISP, company has local (default) name server
 - host DNS query first goes to local name server
- authoritative name server:
 - for a host: stores that host’s IP address, name
 - can perform name/address translation for that host’s name

- traffic volume
- distant centralized database
- maintenance
- doesn’t scale!
DNS: Root name servers

- contacted by local name server that cannot resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server
- ~13 root name servers worldwide

Further information about the root name servers can be found at:
http://netmon.grnet.gr/stathost/rootns/
The DNS Name Space

A portion of the Internet domain name space showing some top Level Domains (TLDs).
Name Servers

Part of the DNS name space showing the division into zones.
host `sun.lopsys.net` wants IP address of `mail.yahoo.com`

1. Contacts its local DNS server, `dns.lopsys.net`

2. `dns.lopsys.net` contacts root name server, if necessary

3. root name server contacts authoritative name server, `dns.yahoo.com`, if necessary
DNS example

Root name server:
- may not know authoritative name server
- may know intermediate name server: who to contact to find authoritative name server
recursive query:
- puts burden of name resolution on contacted name server
- heavy load?

iterated query:
- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS: caching and updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL usually 24 hours)

- update/notify mechanisms under design by IETF
 - RFC 2136
Domains, Zones, Authority, Delegation

• Domain: is a node in the DNS tree, which includes all the nodes (domains) underneath it.

• Zone: is a portion of the DNS tree that a particular DNS server is authoritative for.

• A DNS Server may delegate authority of its subdomains to other organizations or departments.
Deployment Example

DNS queries from mail server do not travel over any network.

- Mail Server
 - DNS Cache
- Primary DNS (External)
- Secondary DNS
- ISP DNS (as secondary)
- DHCP 1
- DHCP 2
- Primary DNS (Internal)
- Secondary DNS
- DHCP Proxy
- DMZ
- Internet
- Outside
- Inside
- Host(s)
- Firewall
DNS Clients (resolver configuration)

- A DNS client is called a resolver.
- A call to `getByName()` is handled by a resolver (typically part of the client).

UNIX: `/etc/resolv.conf`

nameserver 141.218.143.12
nameserver 141.218.40.10
nameserver 141.218.1.100
domain cs.wmich.edu
DNS Servers

- The name of the DNS server in UNIX is **named**

- The configuration file for **named** can be found usually in `/etc/named.conf`

- The zone files are usually kept in `/var/named` with all the zone resource records (e.g., A, PTR, MX, NS, CNAME).

- BIND (Berkeley Internet Name Domain) is an common implementation of DNS server, source code and binaries are freely available http://www.isc.org
DNS records

DNS: distributed db storing resource records

(RR)

RR format: (name, value, type, ttl)

- **Type=A**
 - *name* is hostname
 - *value* is IP address

- **Type=NS**
 - *name* is domain (e.g. foo.com)
 - *value* is IP address of authoritative name server for this domain

- **Type=CNAME**
 - *name* is an alias name for some “cannonical” (the real) name
 - *value* is cannonical name

- **Type=MX**
 - *value* is hostname of mailserver associated with *name*
Resource Records

The principal DNS resource records types.

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA</td>
<td>Start of Authority</td>
<td>Parameters for this zone</td>
</tr>
<tr>
<td>A</td>
<td>IP address of a host</td>
<td>32-Bit integer</td>
</tr>
<tr>
<td>MX</td>
<td>Mail exchange</td>
<td>Priority, domain willing to accept e-mail</td>
</tr>
<tr>
<td>NS</td>
<td>Name Server</td>
<td>Name of a server for this domain</td>
</tr>
<tr>
<td>CNAME</td>
<td>Canonical name</td>
<td>Domain name</td>
</tr>
<tr>
<td>PTR</td>
<td>Pointer</td>
<td>Alias for an IP address</td>
</tr>
<tr>
<td>HINFO</td>
<td>Host description</td>
<td>CPU and OS in ASCII</td>
</tr>
<tr>
<td>TXT</td>
<td>Text</td>
<td>Uninterpreted ASCII text</td>
</tr>
</tbody>
</table>
Resource Records (2)

<table>
<thead>
<tr>
<th>Host</th>
<th>Type</th>
<th>Class</th>
<th>TTL</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs.vu.nl</td>
<td>SOA</td>
<td>IN</td>
<td>86400</td>
<td>star boss</td>
<td>952771,7200,7200,2419200,86400</td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>TXT</td>
<td>IN</td>
<td>86400</td>
<td>"Divisie Wiskunde en Informatica."</td>
<td></td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>TXT</td>
<td>IN</td>
<td>86400</td>
<td>"Vrije Universiteit Amsterdam."</td>
<td></td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>MX</td>
<td>IN</td>
<td>86400</td>
<td>zephyr.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>cs.vu.nl</td>
<td>MX</td>
<td>IN</td>
<td>86400</td>
<td>top.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>HINFO</td>
<td>IN</td>
<td>86400</td>
<td>Sun Unix</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>A</td>
<td>IN</td>
<td>86400</td>
<td>130.37.16.112</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>A</td>
<td>IN</td>
<td>86400</td>
<td>192.31.231.165</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>MX</td>
<td>IN</td>
<td>86400</td>
<td>flits.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>MX</td>
<td>IN</td>
<td>86400</td>
<td>zephyr.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>flits.cs.vu.nl</td>
<td>MX</td>
<td>IN</td>
<td>86400</td>
<td>top.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>www.cs.vu.nl</td>
<td>CNAME</td>
<td>IN</td>
<td>86400</td>
<td>star.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>ftp.cs.vu.nl</td>
<td>CNAME</td>
<td>IN</td>
<td>86400</td>
<td>zephyr.cs.vu.nl</td>
<td></td>
</tr>
<tr>
<td>rowboat</td>
<td>A</td>
<td>IN</td>
<td></td>
<td>130.37.56.201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX</td>
<td>IN</td>
<td></td>
<td>1 rowboat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX</td>
<td>IN</td>
<td></td>
<td>2 zephyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HINFO</td>
<td>IN</td>
<td></td>
<td>Sun Unix</td>
<td></td>
</tr>
<tr>
<td>little-sister</td>
<td>A</td>
<td>IN</td>
<td></td>
<td>130.37.62.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HINFO</td>
<td>IN</td>
<td></td>
<td>Mac MacOS</td>
<td></td>
</tr>
<tr>
<td>laserjet</td>
<td>A</td>
<td>IN</td>
<td></td>
<td>192.31.231.216</td>
<td>"HP Laserjet IIIIsi" Proprietary</td>
</tr>
</tbody>
</table>
DNS protocol, messages

DNS protocol: query and reply messages, both with same message format

msg header
- **identification:** 16 bit # for query, reply to query uses same #
- **flags:**
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative
DNS protocol, messages

Name, type fields for a query

RRs in response to query

Records for authoritative servers

Additional "helpful" info that may be used
$ nslookup -d csy01.cs.wmich.edu

Got answer:

HEADER:
 opcode = QUERY, id = 6, rcode = NOERROR
 header flags: response, auth. answer, want recursion, recursion avail.
 questions = 1, answers = 1, authority records = 4, additional = 4

QUESTIONS:
 csy01.cs.wmich.edu, type = A, class = IN
ANSWERS:
 -> csy01.cs.wmich.edu
 internet address = 141.218.143.215
ttl = 14400 (4 hours)
AUTHORITY RECORDS:
 -> cs.wmich.edu
 nameserver = gumby.cc.wmich.edu
ttl = 14400 (4 hours)
 -> cs.wmich.edu
 nameserver = hal.cs.wmich.edu
ttl = 14400 (4 hours)
ADDITIONAL RECORDS:
 -> gumby.cc.wmich.edu
 internet address = 141.218.20.114
ttl = 3120 (52 mins)
 -> hal.cs.wmich.edu
 internet address = 141.218.143.10
ttl = 14400 (4 hours)

Name: csy01.cs.wmich.edu
Address: 141.218.143.215

$ nslookup -querytype=MX cnn.com

Server: hal.cs.wmich.edu
Address: 141.218.143.10

Non-authoritative answer:
cnn.com MX preference = 10, mail exchanger = atlmail1.turner.com
cnn.com MX preference = 10, mail exchanger = atlmail4.turner.com
cnn.com MX preference = 20, mail exchanger = atlmail2.turner.com
cnn.com MX preference = 30, mail exchanger = nymail1.turner.com
cnn.com MX preference = 5, mail exchanger = atlmail3.turner.com
cnn.com MX preference = 10, mail exchanger = atlmail4.turner.com
cnn.com MX preference = 20, mail exchanger = atlmail2.turner.com
cnn.com MX preference = 30, mail exchanger = nymail1.turner.com
cnn.com MX preference = 5, mail exchanger = atlmail3.turner.com

com nameserver = a.gtld-servers.net
com nameserver = g.gtld-servers.net
com nameserver = h.gtld-servers.net
com nameserver = c.gtld-servers.net
com nameserver = i.gtld-servers.net
com nameserver = b.gtld-servers.net
com nameserver = d.gtld-servers.net
com nameserver = l.gtld-servers.net
com nameserver = f.gtld-servers.net
com nameserver = j.gtld-servers.net
com nameserver = k.gtld-servers.net
com nameserver = m.gtld-servers.net
atlmail1.turner.com internet address = 64.236.240.146
atlmail4.turner.com internet address = 64.236.221.5
atlmail2.turner.com internet address = 64.236.240.147
nymail1.turner.com internet address = 64.236.170.7
nymail1.turner.com internet address = 64.236.170.8
atlmail3.turner.com internet address = 64.236.240.169
g.gtld-servers.net internet address = 192.42.93.30
h.gtld-servers.net internet address = 192.54.112.30