Managing Cookies

JE
Cookies

m Cookies are a general mechanism which
server side applications can use to both
store and retrieve information on the client
side

m Servers send cookies in the HTTP
response and browsers are expected to
save and to send the cookie back to the
Server whenever they make additional
requests from the Server

S
Managing Cookies

m Get the cookies from the service request:
Cookie[] HttpServletRequest.getCookies()
m Add a cookie to the service response:
HttpServletResponse.addCookie(Cookie cookie)
m Cookie getter methods:

getName(), getValue(), getPath(), getDomain(),
getMaxAge, getSecure...

m Cookie setter methods:

setValue() , setPath(), setDomain()...

" J
public class WelcomeBack extends HttpServlet {

public void doGet(HttpServietRequest req, HttpServletResponse res)
throws ServiletException, IOException {

String user = req.getParameter("username");
If (user == null) {
Cookie[] cookies = req.getCookies();
for (int1 =0 ; cookies!=null && | < cookies.length ; i++) {
If (cookies[i].getName().equals("username"))
user = cookiesJi].getValue(); }
} else res.addCookie(new Cookie("username”, user));

If (user !=null) {
res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.printin("<html><body><H1>Welcome Back " + user +
“</H1></html></body>");

} else { res.sendRedirect("/dbi-servlets/login.html"); } } }

Session

Management

" I
HTTP Is Stateless

m HTTP Is a stateless protocol
Individual requests are treated independently

Without external support, one cannot tell whether an
HTTP request is a part of a continuing interaction
between the client and the server

m BUT some Web applications are stateful!
Online stores that maintain a shopping cart
Portals that remember your name and preferences

" I
HTTP Sessions

m The solution: Client and Server transfer some unique data
In the course of a session

m A session captures the notion of a continuous interaction
between a server and a client

For example, a series of requests and responses between |IE and
Tomcat with short intervals between them

m Session management should be oblivious to the end-user

m Session management should be efficient

Is it reasonable to send the whole shopping cart upon every request
to Amazon.com?

JE
Session Supporting Servers

m A server that supports sessions holds the
session-specific data in an internal data
structure (session object)

m Upon the first request, the server initializes the

session object and sends the client a unique key
for this object

m During the session, the client attaches this key
to every request to the server

" J
Session Management Methods

m How is the session key shared between
the client and the server?

m We will discuss two methods that Servlet
containers support:
Session Cookies
URL rewriting

JE—
Session Cookies

m In the response to the first request of a session,
the server puts a cookie, which contains a key to
the session

m \When the client sends subsequent requests, it also
sends the cookie

m The browser sends the cookie as long as the
requests are in the session bound (e.g. the same
process)

m The server treats the cookie as valid as long as the
requests are in the session bound (e.g. a short
time period passed since the last request)

JE—
Session Cookies

m Session cookies are simply a special kind
of cookies

m The time boundary of session cookies Is

based on the session and not on an
explicit date

This is the default expiration time

m Session data Is kept on the server, while

the session cookie holds only a key to this
data

N
URL Rewriting

m Web browsers may refuse to save cookies

m Therefore, Servlet containers support session
management through URL rewriting

m Instead of passing the session key In a cookie,
the key Is concatenated to the request URL

m Pages should contain dynamically created links
for site navigation

thus, users are oblivious to the session management

S
URL Rewriting

| - o

request —
>
(no cookie)

|9

—— respbnse
Web %
browser 1
Web server
v

GET servletURL;sessID=id, HTTP/1.0

request

>

<€

response
< D

Session
read/write

v

<HTML>...

.</HTML>

S
Accessing the Session Data

m Session data Is represented by the class
HttpSession

m Use the methods getSesssion() or
getSession(true) of the doXXX request to
get the current HttpSession object, or to
create one If it doesn’t exist

m Use getSession(false) if you do not want to
create a new session If no session exists

I
HttpSession Methods

m Session data is accessed in a hash-table fashion:

- setAttribute(String name,Object value)

- Where is this value stored?

- Object getAttribute(String name)
m More methods:

- removeAittribute, getAttributeNames
- IsNew, invalidate, getid
- getCreationTime, getLastAccessedTime

- getMaxInactivelnterval, setMaxInactivelnterval

The first request to Servlet

GET /dbi-servlets/Store HTTP/1.1
Accept: */*
Host: localhost

Connection: Keep-Alive

Response:

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=850173A82D7A7C66B28AF6F337AF73AD; Path=/dbi
Content-Type: text/ntml

Content-Length: 402

Server. Apache-Coyote/1.1

Next request to Servlet:

GET /dbi-servlets/Store HTTP/1.1
Accept: */*
Host: localhost

Connection: Keep-Alive
Cookie: JSESSIONID=850173A82D7A7C66B28AF6F337AF73AD

Response:

HTTP/1.1 200 OK
Content-Type: text/ntml
Content-Length: 330
Server: Apache-Coyote/1.1

=
Servlet URL Rewriting

Use the following methods of the doXXX response object to
rewrite URLSs:

- String encodeURL(String url)
m Use for HTML hyperlinks

- String encodeRedirectURL(String url)
= Use for HTTP redirections

These methods contain the logic to determine whether the
session ID needs to be encoded in the URL

For example, if the request has a cookie, then url is returned
unchanged

Some servers implement the two methods identically

"
Example:

<html><head><link rel="stylesheet" type="text/css"
href="cartstyle.css"></head><body>

Hello new visitor!

Your Shopping Cart:<i> </i>

<form method="POST" action=
"ShoppingCart;jsessionid=2409D7C062C6E32E2B4F28EAB1

36E7/F8">
Add item:<input name="item" type="text">

<input type="submit" value="send">

<input
type="submit" value="Empty Cart" name="clear"></form>

</body></html|>

e
Reference

m Representation and Management of Data on the Internet (67633),
Yehoshua Sagiv, The Hebrew University - Institute of Computer
Science.

