
Managing Cookies

Cookies

Cookies are a general mechanism which
server side applications can use to both
store and retrieve information on the client
side
Servers send cookies in the HTTP
response and browsers are expected to
save and to send the cookie back to the
Server whenever they make additional
requests from the Server

Managing Cookies

Get the cookies from the service request:
Cookie[] HttpServletRequest.getCookies()

Add a cookie to the service response:
HttpServletResponse.addCookie(Cookie cookie)

Cookie getter methods:
getName(), getValue(), getPath(), getDomain(),

getMaxAge, getSecure…

Cookie setter methods:
setValue() , setPath(), setDomain()…

public class WelcomeBack extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
String user = req.getParameter("username");
if (user == null) {

Cookie[] cookies = req.getCookies();
for (int i = 0 ; cookies!=null && i < cookies.length ; i++) {
if (cookies[i].getName().equals("username"))

user = cookies[i].getValue(); }
} else res.addCookie(new Cookie("username", user));

if (user != null) {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<html><body><H1>Welcome Back " + user +

“</H1></html></body>");
} else { res.sendRedirect("/dbi-servlets/login.html"); } } }

Session
Management

HTTP is Stateless

HTTP is a stateless protocol
Individual requests are treated independently
Without external support, one cannot tell whether an
HTTP request is a part of a continuing interaction
between the client and the server

BUT some Web applications are stateful!
Online stores that maintain a shopping cart
Portals that remember your name and preferences

HTTP Sessions
The solution: Client and Server transfer some unique data
in the course of a session

A session captures the notion of a continuous interaction
between a server and a client

For example, a series of requests and responses between IE and
Tomcat with short intervals between them

Session management should be oblivious to the end-user

Session management should be efficient
Is it reasonable to send the whole shopping cart upon every request
to Amazon.com?

Session Supporting Servers

A server that supports sessions holds the
session-specific data in an internal data
structure (session object)
Upon the first request, the server initializes the
session object and sends the client a unique key
for this object
During the session, the client attaches this key
to every request to the server

Session Management Methods

How is the session key shared between
the client and the server?
We will discuss two methods that Servlet
containers support:

1. Session Cookies
2. URL rewriting

Session Cookies
In the response to the first request of a session,
the server puts a cookie, which contains a key to
the session
When the client sends subsequent requests, it also
sends the cookie
The browser sends the cookie as long as the
requests are in the session bound (e.g. the same
process)
The server treats the cookie as valid as long as the
requests are in the session bound (e.g. a short
time period passed since the last request)

Session Cookies

Session cookies are simply a special kind
of cookies
The time boundary of session cookies is
based on the session and not on an
explicit date

This is the default expiration time
Session data is kept on the server, while
the session cookie holds only a key to this
data

URL Rewriting

Web browsers may refuse to save cookies
Therefore, Servlet containers support session
management through URL rewriting
Instead of passing the session key in a cookie,
the key is concatenated to the request URL
Pages should contain dynamically created links
for site navigation

thus, users are oblivious to the session management

URL Rewriting

Web server

request

ServletServlet

id1
response response

request

(no cookie)

id2

Session
read/write

Web
browser 1

GET servletURL;sessID=id1 HTTP/1.0

<HTML>…

…</HTML>

Accessing the Session Data

Session data is represented by the class
HttpSession
Use the methods getSesssion() or
getSession(true) of the doXXX request to
get the current HttpSession object, or to
create one if it doesn’t exist
Use getSession(false) if you do not want to
create a new session if no session exists

HttpSession Methods

Session data is accessed in a hash-table fashion:
- setAttribute(String name,Object value)

- Where is this value stored?

- Object getAttribute(String name)

More methods:
- removeAttribute, getAttributeNames

- isNew, invalidate, getId

- getCreationTime, getLastAccessedTime

- getMaxInactiveInterval, setMaxInactiveInterval

GET /dbi-servlets/Store HTTP/1.1

Accept: */*

Host: localhost

Connection: Keep-Alive

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=850173A82D7A7C66B28AF6F337AF73AD; Path=/dbi

Content-Type: text/html

Content-Length: 402

Server: Apache-Coyote/1.1

The first request to Servlet

Response:

GET /dbi-servlets/Store HTTP/1.1

Accept: */*

Host: localhost

Connection: Keep-Alive

Cookie: JSESSIONID=850173A82D7A7C66B28AF6F337AF73AD

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 330

Server: Apache-Coyote/1.1

Next request to Servlet:

Response:

Servlet URL Rewriting
Use the following methods of the doXXX response object to
rewrite URLs:
- String encodeURL(String url)

Use for HTML hyperlinks

- String encodeRedirectURL(String url)
Use for HTTP redirections

These methods contain the logic to determine whether the
session ID needs to be encoded in the URL
For example, if the request has a cookie, then url is returned
unchanged
Some servers implement the two methods identically

Example:
<html><head><link rel="stylesheet" type="text/css"

href="cartstyle.css"></head><body>
Hello new visitor!

Your Shopping Cart:<i> </i>
<form method="POST“ action=
"ShoppingCart;jsessionid=2409D7C062C6E32E2B4F28EAB1
36E7F8">
Add item:<input name="item" type="text">
<input type="submit" value="send">

<input
type="submit" value="Empty Cart" name="clear"></form>

</body></html>

Reference

Representation and Management of Data on the Internet (67633),
Yehoshua Sagiv, The Hebrew University - Institute of Computer
Science.

