
RESTful Services in Nutshell

Based on the original slides of Michael Arnwine: Service Oriented Architecture (SOA)
and “Restful” Service.

Based on the original slides of Bill Burke: REST and JAX-RS

REST Concept

• Actually only the difference is how clients access our service.
Normally, a service will use SOAP, but if you build a REST
service, clients will be accessing your service with a different
architectural style (calls, serialization like JSON, etc.).

• REST uses some common HTTP methods to
insert/delete/update/retrieve information which is below:

• GET - Requests a specific representation of a resource
• PUT - Creates or updates a resource with the supplied

representation
• DELETE - Deletes the specified resource
• POST - Submits data to be processed by the identified

resourc

What is REST?
• REpresentational State Transfer

▫ PhD by Roy Fielding
▫ The Web is the most successful application on the Internet
▫ What makes the Web so successful?

• Addressable Resources
▫ Every “thing” should have an ID
▫ Every “thing” should have a URI

• Constrained interface
▫ Use the standard methods of the protocol
▫ HTTP: GET, POST, PUT, DELETE

• Resources with multiple representations
▫ Different applications need different formats
▫ Different platforms need different representations (XML + JSON)

• Communicate statelessly
▫ Stateless application scale

Addressability

• Every “thing” has a URI

• From a URI we know

▫ The protocol (How do we communicate)

▫ The host/port (Where it is on network)

▫ The resource path(What resource are we
communicating with

http://sales.com/customers/323421
http://sales.com/customers/32341/address

Describing a URI

• Human readable URIs: Desired but not required

• URI Parameters

• Query parameters to find other resources

• Matrix parameters to define resource attributes

http://sales.com/customers/323421
/customers/{customer-id}

http://sales.com/customers?zip=49009

http://sales.com/cars/mercedes/amg/e55;color=black

Implications of a Uniform Interface

• Intuitive
▫ You know what operations the resource will support

• Predictable behavior
▫ GET - readonly and idempotent. Never changes the state of

the resource
▫ PUT - an idempotent insert or update of a resource.

Idempotent because it is repeatable without side effects.
▫ DELETE - resource removal and idempotent.
▫ POST - non-idempotent, “anything goes” operation

• Clients, developers, admins, operations know what to
expect
▫ Much easier for admins to assign security roles
▫ For idempotent messages, clients don’t have to worry about

duplicate messages.

REST

"Representational State Transfer is intended to evoke
an image of how a well-designed Web application
behaves: a network of web pages (a virtual state-
machine), where the user progresses through an
application by selecting links (state transitions),
resulting in the next page (representing the next
state of the application) being transferred to the
user and rendered for their use.“

•Less overhead (no SOAP envelope to wrap every call in)

•Less duplication (HTTP already represents operations

like DELETE, PUT, GET, etc. that have to otherwise be represented in a

SOAP envelope).

•More standardized - HTTP operations are well understood and operate

consistently. Some SOAP implementations can get finicky.

•More human readable and testable (harder to test SOAP with just a

browser).

•Don't need to use XML (well, you kind of don't have to for SOAP either

but it hardly makes sense since you're already doing parsing of the

envelope).

•Libraries have made SOAP (kind of) easy. But you are abstracting away

a lot of redundancy underneath as I have noted. Yes, in theory, SOAP can

go over other transports so as to avoid riding atop a layer doing similar

things, but in reality just about all SOAP work you'll ever do is over HTTP.

Why REST?

• Resources and Resource Identifiers
• Uniform Interface (GET, PUT, POST, DELETE)
• Resource Oriented
• Simple and simple is beautiful

REST Data Elements

HTTP Method CRUD Desc.

POST CREATE Create -

GET RETRIEVE Retrieve Safe,Idempotent,Cacheable

PUT UPDATE Update Idempotent

DELETE DELETE Delete Idempotent

REST Core Idiologies

• Simple is better

• The web works and works well

• Some web services should follow the “way of the
web”.

RESTful Services

• Resources as URI

▫ Use unique URI to reference every resource on your
API

• Operations as HTTP Methods

▫ GET – Queries

▫ POST – Queries

▫ PUT, DELETE – Inset, Update and delete

• Connectedness and Discoverability

▫ Like the Web, HTTP Responses contains links to
other resources

URL
http://del.icio.us/api/[username]/book
marks/

Method GET

Querystring

tag= Filter by tag

dt= Filter by date

start=
The number of the
first bookmark to
return

end=
The number of the
last bookmark to
return

Returns

200 OK & XML
(delicious/bookmarks+xml)

401 Unauthorized

404 Not Found

REST API EXAMPLE: Delicious

REST API EXAMPLE: Delicious

URL
http://del.icio.us/api/[usern
ame]/bookmarks/

Method POST

Request Body
XML
(delicious/bookmark+xml)

Returns

201 Created & Location

401 Unauthorized

415 Unsupported Media
Type

REST API EXAMPLE: Delicious

URL
http://del.icio.us/api/[usern
ame]/bookmarks/[hash]

Method DELETE

Returns

204 No Content

401 Unauthorized

404 Not Found

Designing services with a Uniform Interface

• When in doubt, define a new resource

• /orders
▫ GET - list all orders

▫ POST - submit a new order

• /orders/{order-id}
▫ GET - get an order representation

▫ PUT - update an order

▫ DELETE - cancel an order

• /orders/average-sale
▫ GET - calculate average sale

• /customers
▫ GET - list all customers

▫ POST - create a new customer

• /customers/{cust-id}
▫ GET - get a customer representation

▫ DELETE- remove a customer

• /customers/{cust-id}/orders
▫ GET - get the orders of a customer

Resources with Multiple Representations

• HTTP Headers manage this negotiation

▫ CONTENT-TYPE: specifies MIME type of message body

▫ ACCEPT: comma delimited list of one or more MIME
types the client would like to receive as a response

▫ In the following example, the client is requesting a
customer representation in either xml or json format

• Preferences are supported and defined by HTTP
specification

GET /customers/33323
ACCEPT: application/xml,application/json

GET /customers/33323
ACCEPT: text/html;q=1.0,

application/json;q=0.5;application/xml;q=0.7

What is JSON?

• JavaScript Object Notation

• Lightweight syntax for representing data

• Easier to “parse” for JavaScript client code

• Alternative to XML in AJAX applications

[{"Email":"bob@example.com","Name":"Bob"},{"Email
":"mark@example.com","Name":"Mark"},{"Email":"j
ohn@example.com","Name":"John"}]

EXAMPLES:

Publish and Consume REST Services

EXAMPLES of REST APIs:

Facebook Graph API

Google Custom Search API

Yahoo

… and a lot more …

n-Tiers Architecture

• SOAP and REST based web-services enable the
3-tier architecture to be extended into n-tiers.

•

JAX-RS

• JCP Specification
▫ Lead by Sun, Marc Hadley
▫ Currently in public draft (which means final draft right

around the corner)
• Annotation Framework
• Dispatch URI’s to specific classes and methods that

can handle requests
• Allows you to map HTTP requests to method

invocations
• IMO, a beautiful example of the power of parameter

annotations
• Nice URI manipulation functionality

JAX-RS Annotations

• @Path

▫ Defines URI mappings and templates

• @ProduceMime, @ConsumeMime

▫ What MIME types does the resource produce and
consume

• @GET, @POST, @DELETE, @PUT, @HEADER

▫ Identifies which HTTP method the Java method is
interested in

JAX-RS Parameter Annotations
• @PathParam

▫ Allows you to extract URI parameters/named URI template segments

• @QueryParam
▫ Access to specific parameter URI query string

• @HeaderParam
▫ Access to a specific HTTP Header

• @CookieParam
▫ Access to a specific cookie value

• @MatrixParam
▫ Access to a specific matrix parameter

• Above annotations can automatically map HTTP request values to
▫ String and primitive types
▫ Class types that have a constructor that takes a String parameter
▫ Class types that have a static valueOf(String val) method
▫ List or Arrays of above types when there are multiple values

• @Context
▫ Access to contextual information like the incoming URI

JAX-RS Resource Classes

• JAX-RS annotations are used on POJO classes

• The default component lifecycle is per-request

▫ Same idea as @Stateless EJBs

• Root resources identified via @Path annotation
on class

JAX-RS
@Path(“/orders”)
public class OrderService {

@Path(“/{order-id}”)
@GET
@ProduceMime(“application/xml”)
String getOrder(@PathParam(“order-id”) int id) {
…

}
}

Default Response Codes

• GET and PUT

▫ 200 (OK)

• DELETE and POST

▫ 200 (OK) if content sent back with response

▫ 204 (NO CONTENT) if no content sent back

Response Object
• JAX-RS has a Response and ResponseBuilder class

▫ Customize response code

▫ Specify specific response headers

▫ Specify redirect URLs

▫ Work with variants

@GET
Response getOrder() {

ResponseBuilder builder = Response.status(200);
builder.type(“text/xml”)

.header(“custom-header”, “33333”);
return builder.build();

}

RESTful Service Example:

java.net.URL RESTful Client:

Apache HttpClient:

Jersey Client (jersey-client.jar):

JAXB Annotations:

Produces:

JAX-RS Service that Returns XML:

OAuth2.0
OAuth 2.0 is a relatively simple protocol and a developer can integrate with Google's OAuth
2.0 endpoints without too much effort. In a nutshell, you register your application with Google,
redirect a browser to a URL, parse a token from the response, and send the token to the
Google API you wish to access.

