More on JSP

<jsp:forward>

<jsp:include>

<jsp:param>

<jsp:plugin>

<jsp:useBean>

<jsp:getProperty> Used for Java Beans

<jsp:setProperty>

e Standard Action Example: <JSP: include> tag

e Example:
<HTML>
<BODY>
Going to include hello.jsp...

<jsp:include page="hello.jsp'/>
</BODY>
</HTML>

Executes the included JSP page and adds its output into the this
page

What’s Difference from Using the ‘include’ directive?

e.g. <%@ include file = “hello.jsp” %>

e The include directive includes the contents of another file at
compilation time. Good for including common static code e.g.
header file, footer file. Good on performance - included only
once.

e But, what if including dynamic common code (e.g. a navigation
bar where links are read from the dB?).. need to re-run the file
each time a request is made --> JSP: i1nclude

e JSP: include incorporates the output of the included JSP
file at run time

» Standard Action Example: <JSP: forward> tag

» Stops processing of one page and starts processing the page
specified by the page attribute

Example:

<HTML>
<BODY>

<jsp:forward page=‘“errorpage.jsp'/>
</BODY>
</HTML>

e Standard Action Example: <JSP: param> tag

e Can be used to pass parameters when using <jsp: include>
or <JSP:forward>

< Example
<jsp:forward page="login.jsp">
<jsp:param name="‘username’ \value="jsmith" />

</jsp:include>

Executes a login page
Jsp:param passes in username to the login page

" J
Standard Actions

m <jsp:useBean> : associates an instance of a java
object with a newly declard scripting variable of the
same id

<jsp:useBean id="name”
scope="“page|request|session|application”
class=“className” />

m <jsp:setProperty>

<jsp:setProperty name="beanid” property="*"/>

m <jsp:getProperty> :action places the value of a Bean
instance property, converted to a string, into the
implicit out object

<jsp:getProperty name="beanid” property="“propertyName”
/>

m <jsp:param>
<jsp:param name=“paramname” value="“paramvalue” />

m <jsp:include> :Include static or dynamic (jsp) pages
with optional parameters to pass to the included
page.

<jsp:include page="filename” />

<jsp:include page="urlSpec”>
<jsp:param name paramname” value="value”>
</jsp:include>

m <jsp:forward> : allows the runtime dispatch of the
current request to a static resource, jsp pages or java
servlet in the same context as the current page.

<jsp:forward page="url” />

<jsp:include page="urlSpec”>
<jsp:param name=paramname” value="value”>
</jsp:forward>

" J
JSP and Scope

Page - objects with page scope are accessible only
within the page where they are created

Request - objects with request scope are accessible
from pages processing the same request where they
were created

Session - objects with session scope are accessible from
pages processing requests that are in the same session
as the one in which they were created

Application - objects with application scope are
accessible from pages processing requests that are in
the same application as the one in which they were
created

All the different scopes behave as a single name space

" S
Implicit Objects

These objects do not need to be declared or instantiated
by the JSP author, but are provided by the container (jsp
engine) in the implementation class

request Object (javax.servlet.ServletRequest)
response Object (javax.servlet.ServletResponse)
session Object (javax.servlet.http.HttpSession)
application Object

out Object

config Object

page Object

pageContext Object (javax.servlet.jsp.PageContext)
exception

" S
Auto-Generated Servilet Code

JspFactory _jspxFactory = null;

javax.servlet.jsp.PageContext pageContext = null;

HttpSession session = null;

ServletContext application = null;

ServletConfig config = null;

JspWriter out = null;

Object page = this;

JspWriter _jspx_out = null;

try {

_jspxFactory = JspFactory.getDefaultFactory(); response.setContentType("text/xml;charset=UTF-8");
pageContext = _jspxFactory.getPageContext(this, request, response, null, true, 8192, true);
application = pageContext.getServietContext(); config = pageContext.getServletConfig();
session = pageContext.getSession();

out = pageContext.getOut();

_jspx_out = out;

b = (CacheBean) pageContext.getAttribute("b", PageContext.PAGE_SCOPE);
b = (CacheBean) java.beans.Beans.instantiate(this.getClass().getClassLoader(), "CacheBean");
pageContext.setAttribute("b", b, PageContext.PAGE_SCOPE);

JSP Standard Tag

Library (JSTL)

e JSP 1.2 introduced supported for a special tag library
called the JSP Standard Tag Library (JSTL)

e Version 1.0 released in June 2002
Version 1.1 released in June 2004

e The JSTL saves programmers from having to develop
custom tag libraries for a range of common tasks, such
as if statements, conditional loops etc.

e Enables developers to produce more maintainable and
simpler JSP code

e Important development for JSP technology

e The JSP Standard Tag Library groups actions into four
libraries as follows:

Library Contents

Core Core functions such as conditional processing
and looping, important data from external
environments etc

Formatting Format and parse information

SQL read and write relational database data

XMI Processing of XML data

e To use any of these libraries in a JSP, need to declare
using the taglib directive in the JSP page, specifying the
URI and the Prefix

Library Prefix URI

Core C http://java.sun.com/jsp/jstl/core
Formatting fmt http://java.sun.com/jsp/jstl/fmt
SQL sql http://java.sun.com/jspl/jstl/sql
XMI xml http://java.sun.com/jsp/jstl/xml

Example of declaring use of core library:
<%@ taglib prefix = “c” uri = “http://java.sun.com/jsp/jstl/core %>

Example: JSP page using JSTL that outputs 1 to 10 on a webpage
using the <c:forEach> and <c:out> tags of the core library

<%@ taglib uri="http://java.sun.com/jstl/core” prefix=""c" %>
<html>

<head>

<title>Count to 10 Example (using JSTL)</title>

</head>

<body>
<c:forEach var="1" begin="1" end="10" step="1">
<c:out value="${i}" />

</c:forEach> A taglib directive
</body> declare use of core
</html> library

JSTL tag examples

Looking more closely at <c:forEach tag>

<c:forEach var="i" begin="1" end="10" step="1"">
<c:out value="${i}" />

</c:forEach>
</body>
</html>

The <forEach> tag enables loop logic. In this case, will look
through 10 times. Equivalent to java “for” loop
Closing tag <c:forEach> placed after the end of body of loop

All JSTL tags have a set of attributes (similar to HTML tags..)
e.g. <c:foreach> tag has 6 attributes:

var, items, varStatus, begin, end, step

The full details for each attribute is in the JSTL specification
document.

Willl need to use this document to verify WHICH tag
should be used and HOW is should be used

<c:out> .. outputs a value to webpage.
Usually uses just one attribute value

Examples:
<c:out value="${i}" />
<c:out value=*The result of 1 + 2 is ${1+2}” />

<c:out value=*“param.userName" />

<c:i1f> .. evaluates a condition. Uses an attribute test
to hold the condition

Example :

<%-- Simple 1f conditions --%>

<c:if test="%{param.p == "‘someValue'}">
Generate this template text 1t p equals
someValue

</c:if>

Example 2

<c:if test="${param.p}">
Generate this template text 1T p equals "true*
</c:if>

An 1f/else action requires the use of the
<c:choose> tag

Syntax :

<c:choose>
body content (<when> and <otherwise> subtags)
</c:choose>

Uses <c:choose>, <c:when> and <c:otherwise>

Example:
<c:choose>
<c:when test="${param.p == 0"} ">
<c:out value = “zero recorded”/>
</c:when>
<c:when test="${param.p == "1"}"> Generate this
<c:out value = *“single value”/>
</c:when>

<c:otherwise>
<c:out value = “Set to ${param.p}’/>
</c:otherwise>
</c:choose>

Other examples: (NOT a complete list!)

<c:set> ...sets the value of a variable

<c:remove> ...removes a scoped variable
<c:catch> ...catches an exception

<c:url> encodes a URL

<c:import>.. imports the content of a resource
<c:redirect>.. redirects to another URL
<c:param>.. adds a regquest parameter to other
actions

Library Prefix URI

Core c http://java.sun.com/jspl/jstl/core
Formatting |fmt http://java.sun.com/jsp/jstl/fmt
SQL sql http://java.sun.com/jsp/|stl/sal

XMl xml http://java.sun.com/jsp/jstl/xml

JSTL contains a set of actions in the Formatting library -
these tags are useful for formatting numbers, times and dates

e.g. <fmt:parseDate>

<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"
prefix=“fmt" %>

<html> etc etc

<fmt:parseDate value= ${param.empDate}” var =
“parsedEmpDate” pattern = “yyyy-MM-dd” />

etc etc

</html>

The fmt:parseDate action takes the date or time string specified by the
value attribute (e.g. 2001-09-28) , interprets it according to the pattern defined
by the pattern attribute and saves it in a variable called “parsedEmpDate”

Other examples:

<fmt:formatNumber> - formats a numeric value
e.g. number of digits, currency, decimal place

e.g. <fmt:formatNumber value="12.3" pattern="".000"/>

will output “12.300

<fmt:formatDate> --formats a date and time

e Up to now, could only use Java expressions to assign
dynamic values - syntax errors common

e JSTL now provides an expression language (EL) to
support the tags - simpler syntax, less errors

e The EL is now part of the JSP specification (as of
versions JSP 2.0) - can be used in JSTL tags or directly in
JSP pages.

e All EL expressions are evaluated at runtime

e The EL usually handles data type conversion and null
values ---> easy to use

e An EL expression always starts with a ${ and ends with

a }

e The expression can include
- literals (17, *“100 etc)
- variables
- implicit variables

Examples:

<c:out value = “${1+2+3}” />

___Y___J

expression

<c:if test = “${param.Address == “D6’}” />

-= > +
1= <= -
< S>= *
/ or div
e Logical operators consist of &&, ||, and !

e The empty operator is a prefix operator that can used to
determine if a value is null or empty. For example:

<c:if test="%${empty param.name}’>
Please specify your name.
</c:if>

e In JSP, need to be able to access information about the
environment in which the page is running e.g. the
parameters passed in a request for a form, the browser
type of the user, etc.

e Implicit objects are a set of Java objects that the JSP
Container makes available to developers in each page.
These objects may be accessed as built-in variables via
scripting elements

m The JSTL EL allows these objects to be
accessed as ‘Implicit Variables’

m Implicit variable are just pre-agreed fixed
variable names that can be used in JSTL
Expressions

m --—> Think of as “variables that are
automatically available to your JSP page”..

e Very common implicit object is param

= param refers to parameter passed in a request message
(e.g. information entered into a form by a user).

e e.g.<c:out value = “${param.userName}’/>

e Further Examples of using param in next topic

JSTL removes complexity by using tags instead of java code
(abstraction)

JSP pages using JSTL usually easier to maintain
JSTL allows HTML “tag’ developers to ‘program’
JSTL often more difficult to debug

Note: Using JSTL does not eliminate scriplets entirely..
may still need them sometimes for more complex logic

1. “JSP: Action Elements and JSTL,” Susan McKeeve, Dublin Institute of Technology.

2. “Servlets and JSP,” llmi Yoon, San Francisco State University.

