

Purpose \& Overview

Discuss the generation of random numbers.

- Introduce the subsequent testing for randomness:
\square Frequency test
\square Autocorrelation test.

Properties of Random Numbers

- Two important statistical properties:
\square Uniformity
\square Independence.
- Random Number, R_{i}, must be independently drawn from a uniform distribution with pdf:

$$
\begin{aligned}
& f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases} \\
& E(R)=\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

Figure: pdf for random numbers

Generation of Pseudo-Random Numbers

- "Pseudo", because generating numbers using a known method removes the potential for true randomness.
- Goal: To produce a sequence of numbers in $[0,1]$ that simulates, or imitates, the ideal properties of random numbers (RN).
- Important considerations in RN routines:
\square Fast
\square Portable to different computers
\square Have sufficiently long cycle
\square Replicable
\square Closely approximate the ideal statistical properties of uniformity and independence.

Techniques for Generating Random
 Numbers

- Linear Congruential Method (LCM).
- Combined Linear Congruential Generators (CLCG).
- Random-Number Streams.

Linear Congruential Method

- To produce a sequence of integers, X_{1}, X_{2}, \ldots between 0 and $m-1$ by following a recursive relationship:

- The selection of the values for a, c, m, and X_{0} drastically affects the statistical properties and the cycle length.
- The random integers are being generated [0,m-1], and to convert the integers to random numbers:

$$
R_{i}=\frac{X_{i}}{m}, \quad i=1,2, \ldots
$$

Example

[LCM]

- Use $X_{0}=27, a=17, c=43$, and $m=100$.
- The X_{i} and R_{i} values are:

$$
\begin{array}{ll}
X_{1}=\left(17^{*} 27+43\right) \bmod 100=502 \bmod 100=2, & R_{1}=0.02 ; \\
X_{2}=\left(17^{*} 2+32\right) \bmod 100=77, & R_{2}=0.77 ; \\
X_{3}=\left(17^{*} 77+32\right) \bmod 100=52, & R_{3}=0.52 ;
\end{array}
$$

Characteristics of a Good Generator

Maximum Density
\square Such that he values assumed by $R_{i}, i=1,2, \ldots$, leave no large gaps on [0,1]
\square Problem: Instead of continuous, each R_{i} is discrete
Solution: a very large integer for modulus m

- Approximation appears to be of little consequence
- Maximum Period

To achieve maximum density and avoid cycling.Achieve by: proper choice of a, c, m, and X_{0}.

- Most digital computers use a binary representation of numbers

Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2.

Combined Linear Congruential Generators

- Reason: Longer period generator is needed because of the increasing complexity of stimulated systems.
- Approach: Combine two or more multiplicative congruential generators.
- Let $X_{i, 1}, X_{i, 2}, \ldots, X_{i, k}$, be the $i^{\text {th }}$ output from k different multiplicative congruential generators.
\square The $\mathrm{j}^{\text {th }}$ generator:
- Has prime modulus m_{j} and multiplier a_{j} and period is m_{j-1}
- Produces integers $X_{i, j}$ is approx \sim Uniform on integers in [1, m-1]
- $W_{i, j}=X_{i, j}-1$ is approx \sim Uniform on integers in [1, $\left.m-2\right]$

Combined Linear Congruential Generators

[Techniques]
Suggested form:

$$
X_{i}=\left(\sum_{j=1}^{k}(-1)^{j-1} X_{i, j}\right) \bmod m_{1}-1 \quad \text { Hence, } R_{i}= \begin{cases}\frac{X_{i}}{m_{1}}, & X_{i} \succ 0 \\
\frac{m_{1}-1}{m_{1}}, & X_{i}=0 \\
\begin{array}{c}
\text { The coefficient: } \\
\text { Performs the } \\
\text { subtraction } x
\end{array}\end{cases}
$$

- The maximum possible period is:

$$
P=\frac{\left(m_{1}-1\right)\left(m_{2}-1\right) \ldots\left(m_{k}-1\right)}{2^{k-1}}
$$

Combined Linear Congruential Generators

■ Example: For 32-bit computers, L'Ecuyer [1988] suggests combining $k=2$ generators with $m_{1}=2,147,483,563, a_{1}=40,014, m_{2}=$ $2,147,483,399$ and $a_{2}=20,692$. The algorithm becomes:

Step 1: Select seeds

- $X_{1,0}$ in the range $[1,2,147,483,562]$ for the $1^{\text {st }}$ generator
- $X_{2,0}$ in the range [1, 2,147,483,398] for the $2^{\text {nd }}$ generator.

Step 2: For each individual generator,
$X_{1, j+1}=40,014 X_{1, j} \bmod 2,147,483,563$
$X_{2, j+1}=40,692 X_{1, j} \bmod 2,147,483,399$.
Step 3: $X_{j+1}=\left(X_{1, j+1}-X_{2, j+1}\right) \bmod 2,147,483,562$.
Step 4: Return

$$
R_{j+1}= \begin{cases}\frac{X_{j+1}}{2,147,483,563}, & X_{j+1}>0 \\ \frac{2,147,483,562}{2,147,483,563}, & X_{j+1}=0\end{cases}
$$

Step 5: Set $j=j+1$, go back to step 2.
\square Combined generator has period: $\left(m_{1}-1\right)\left(m_{2}-1\right) / 2 \sim 2 \times 10^{18}$

Random-Numbers Streams

- The seed for a linear congruential random-number generator:
\square Is the integer value X_{0} that initializes the random-number sequence.
\square Any value in the sequence can be used to "seed" the generator.
- A random-number stream:
\square Refers to a starting seed taken from the sequence $X_{0}, X_{1}, \ldots, X_{P}$.
\square If the streams are b values apart, then stream i could defined by starting seed: $\quad S_{i}=X_{b(i-1)}$

Older generators: $b=10^{5}$; Newer generators: $b=10^{37}$.

- A single random-number generator with k streams can act like k distinct virtual random-number generators
- To compare two or more alternative systems.
\square Advantageous to dedicate portions of the pseudo-random number sequence to the same purpose in each of the simulated systems.

Tests for Random Numbers

Two categories:
\square Testing for uniformity:

$$
\begin{array}{ll}
H_{0}: & R_{i} \sim U[0,1] \\
H_{1}: & R_{i} \sim U[0,1]
\end{array}
$$

- Failure to reject the null hypothesis, H_{0}, means that evidence of non-uniformity has not been detected.
\square Testing for independence:
$H_{0}: R_{i} \sim$ independently
$H_{1}: R_{i} \uparrow$ independently
- Failure to reject the null hypothesis, H_{0}, means that evidence of dependence has not been detected.
- Level of significance α, the probability of rejecting H_{0} when it is true:

$$
\alpha=P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)
$$

Tests for Random Numbers

- When to use these tests:
\square If a well-known simulation languages or random-number generators is used, it is probably unnecessary to test
\square If the generator is not explicitly known or documented, e.g., spreadsheet programs, symbolic/numerical calculators, tests should be applied to many sample numbers.
- Types of tests:
\square Theoretical tests: evaluate the choices of m, a, and c without actually generating any numbers
\square Empirical tests: applied to actual sequences of numbers produced. Our emphasis.
- Test of uniformity
- Two different methods:
\square Kolmogorov-Smirnov test
\square Chi-square test

Kolmogorov-Smirnov Test

- Compares the continuous cdf, $F(x)$, of the uniform distribution with the empirical cdf, $S_{N}(x)$, of the N sample observations.
\square We know:

$$
F(x)=x, \quad 0 \leq x \leq 1
$$If the sample from the RN generator is $R_{1}, R_{2}, \ldots, R_{N}$, then the empirical cdf, $S_{N}(x)$ is:

$$
S_{N}(x)=\frac{\text { number of } R_{1}, R_{2}, \ldots, R_{n} \text { which are } \leq x}{N}
$$

- Based on the statistic: $D=\max \left|F(x)-S_{N}(x)\right|$
\square Sampling distribution of D is known (a function of N, tabulated in Table A.8.)
- A more powerful test, recommended.

Kolmogorov-Smirnov Test

- Example: Suppose 5 generated numbers are $0.44,0.81,0.14$, $0.05,0.93$.

Step 1:

$R_{\text {(i) }}$	0.05	0.14	0.44	0.81	0.93	
i / N	0.20	0.40	0.60	0.80	1.00	
$i / N-R_{(i)}$	0.15	0.26	0.16	-	0.07	
Arrange $R_{(i)}$ from						
smallest to largest						

Step 3: $D=\max \left(D^{+}, D^{-}\right)=0.26$
Step 4: For $\alpha=0.05$,

$$
D_{\alpha}=0.565>D
$$

Hence, H_{0} is not rejected.

Chi-square test

- Chi-square test uses the sample statistic:

Approximately the chi-square distribution with $n-1$ degrees of freedom (where the critical values are tabulated in Table A.6)
\square For the uniform distribution, E_{i}, the expected number in the each class is:

$$
E_{i}=\frac{N}{n}, \quad \text { where } \mathrm{N} \text { is the total \# of observation }
$$

- Valid only for large samples, e.g. $\mathrm{N}>=50$

Tests for Autocorrelation

- Testing the autocorrelation between every m numbers (m is a.k.a. the lag), starting with the $i^{\text {th }}$ number
\square The autocorrelation $\rho_{i m}$ between numbers: $R_{i j}, R_{i+m}, R_{i+2 m}$ $R_{i+(M+1) m}$
M is the largest integer such that $i+(M+1) m \leq N$
- Hypothesis:

$$
\begin{array}{ll}
H_{0}: & \rho_{i m}=0, \quad \text { if numbers are independent } \\
H_{1}: & \rho_{i m} \neq 0, \quad \text { if numbers are dependent }
\end{array}
$$

- If the values are uncorrelated:

For large values of M , the distribution of the estimator of $\rho_{i m}$, denoted $\hat{\rho}_{i m}$ is approximately normal.

Test statistics is:

$$
Z_{0}=\frac{\hat{\rho}_{i m}}{\hat{\sigma}_{\hat{\rho}_{i m}}}
$$

$\square Z_{0}$ is distributed normally with mean $=0$ and variance $=1$, and:

$$
\begin{aligned}
& \hat{\rho}_{i m}=\frac{1}{M+1}\left[\sum_{k=0}^{M} R_{i+k m} R_{i+(k+1) m}\right]-0.25 \\
& \hat{\sigma}_{\rho_{i m}}=\frac{\sqrt{13 M+7}}{12(M+1)}
\end{aligned}
$$

- If $\rho_{\text {im }}>0$, the subsequence has positive autocorrelation
\square High random numbers tend to be followed by high ones, and vice versa.
- If $\rho_{i m}<0$, the subsequence has negative autocorrelation
\square Low random numbers tend to be followed by high ones, and vice versa.

Example

- Test whether the $3^{\text {rd }}, 8^{\text {th }}, 13^{\text {th }}$, and so on, for the following output on P. 265.
\square Hence, $\alpha=0.05, i=3, m=5, N=30$, and $\mathrm{M}=4$

$$
\begin{aligned}
\hat{\rho}_{35} & =\frac{1}{4+1}\left[\begin{array}{l}
(0.23)(0.28)+(0.25)(0.33)+(0.33)(0.27) \\
+(0.28)(0.05)+(0.05)(0.36)
\end{array}\right]-0.25 \\
& =-0.1945 \\
\hat{\sigma}_{\rho_{35}} & =\frac{\sqrt{13(4)+7}}{12(4+1)}=0.128 \\
Z_{0} & =-\frac{0.1945}{0.1280}=-1.516
\end{aligned}
$$

From Table A.3, $z_{0.025}=1.96$. Hence, the hypothesis is not rejected.

Shortcomings

- The test is not very sensitive for small values of M, particularly when the numbers being tests are on the low side.
- Problem when "fishing" for autocorrelation by performing numerous tests:
\square If $\alpha=0.05$, there is a probability of 0.05 of rejecting a true hypothesis.
If 10 independence sequences are examined,
- The probability of finding no significant autocorrelation, by chance alone, is $0.95^{10}=0.60$.
- Hence, the probability of detecting significant autocorrelation when it does not exist $=40 \%$

Summary

- In this chapter, we described:
\square Generation of random numbers
\square Testing for uniformity and independence
- Caution:
\square Even with generators that have been used for years, some of which still in used, are found to be inadequate.
\square This chapter provides only the basic
\square Also, even if generated numbers pass all the tests, some underlying pattern might have gone undetected.

