
1

Chapter 7
Random-Number
Generation

Banks, Carson, Nelson & Nicol
Discrete-Event System Simulation

2

Purpose & Overview

Discuss the generation of random numbers.

Introduce the subsequent testing for
randomness:

Frequency test
Autocorrelation test.

2

3

Properties of Random Numbers

Two important statistical properties:
Uniformity
Independence.

Random Number, Ri, must be independently drawn from a
uniform distribution with pdf:

Figure: pdf for
random numbers

 ≤≤

=
otherwise ,0

10 ,1
)(

x
xf

2
1

2
)(

1

0

21

0
=== ∫

xxdxRE

4

Generation of Pseudo-Random Numbers

“Pseudo”, because generating numbers using a known
method removes the potential for true randomness.
Goal: To produce a sequence of numbers in [0,1] that
simulates, or imitates, the ideal properties of random numbers
(RN).
Important considerations in RN routines:

Fast
Portable to different computers
Have sufficiently long cycle
Replicable
Closely approximate the ideal statistical properties of uniformity
and independence.

3

5

Techniques for Generating Random
Numbers

Linear Congruential Method (LCM).
Combined Linear Congruential Generators (CLCG).
Random-Number Streams.

6

Linear Congruential Method [Techniques]

To produce a sequence of integers, X1, X2, … between 0
and m-1 by following a recursive relationship:

The selection of the values for a, c, m, and X0 drastically
affects the statistical properties and the cycle length.
The random integers are being generated [0,m-1], and to
convert the integers to random numbers:

,...2,1,0 , mod)(1 =+=+ imcaXX ii

The
multiplier

The
increment

The
modulus

,...2,1 , == i
m
XR i

i

4

7

Example [LCM]

Use X0 = 27, a = 17, c = 43, and m = 100.
The Xi and Ri values are:

X1 = (17*27+43) mod 100 = 502 mod 100 = 2, R1 = 0.02;
X2 = (17*2+32) mod 100 = 77, R2 = 0.77;
X3 = (17*77+32) mod 100 = 52, R3 = 0.52;
…

8

Characteristics of a Good Generator
[LCM]

Maximum Density
Such that he values assumed by Ri, i = 1,2,…, leave no large
gaps on [0,1]
Problem: Instead of continuous, each Ri is discrete
Solution: a very large integer for modulus m

Approximation appears to be of little consequence
Maximum Period

To achieve maximum density and avoid cycling.
Achieve by: proper choice of a, c, m, and X0.

Most digital computers use a binary representation of
numbers

Speed and efficiency are aided by a modulus, m, to be (or close
to) a power of 2.

5

9

Combined Linear Congruential Generators
[Techniques]

Reason: Longer period generator is needed because of the
increasing complexity of stimulated systems.
Approach: Combine two or more multiplicative congruential
generators.
Let Xi,1, Xi,2, …, Xi,k, be the ith output from k different
multiplicative congruential generators.

The jth generator:
Has prime modulus mj and multiplier aj and period is mj-1

Produces integers Xi,j is approx ~ Uniform on integers in [1,
m-1]
Wi,j = Xi,j -1 is approx ~ Uniform on integers in [1, m-2]

10

Combined Linear Congruential Generators
[Techniques]

Suggested form:

The maximum possible period is:

1 mod)1(1
1

,
1 −

−= ∑

=

− mXX
k

j
ji

j
i

=
−=

0 ,1

0 ,
 Hence,

1

1

1

i

i
i

i

X
m

m

X
m
X

R
f

1
21

2
)1)...(1)(1(

−

−−−
= k

kmmmP

The coefficient:
Performs the

subtraction Xi,1-1

6

11

Combined Linear Congruential Generators
[Techniques]

Example: For 32-bit computers, L’Ecuyer [1988] suggests combining
k = 2 generators with m1 = 2,147,483,563, a1 = 40,014, m2 =
2,147,483,399 and a2 = 20,692. The algorithm becomes:

Step 1: Select seeds
X1,0 in the range [1, 2,147,483,562] for the 1st generator
X2,0 in the range [1, 2,147,483,398] for the 2nd generator.

Step 2: For each individual generator,
X1,j+1 = 40,014 X1,j mod 2,147,483,563
X2,j+1 = 40,692 X1,j mod 2,147,483,399.

Step 3: Xj+1 = (X1,j+1 - X2,j+1) mod 2,147,483,562.
Step 4: Return

Step 5: Set j = j+1, go back to step 2.
Combined generator has period: (m1 – 1)(m2 – 1)/2 ~ 2 x 1018

=

>
=

+

+
+

+

0 ,
5632,147,483,
5622,147,483,

0 ,
5632,147,483,

1

1
1

1

j

j
j

j

X

X
X

R

12

Random-Numbers Streams [Techniques]

The seed for a linear congruential random-number generator:
Is the integer value X0 that initializes the random-number sequence.
Any value in the sequence can be used to “seed” the generator.

A random-number stream:
Refers to a starting seed taken from the sequence X0, X1, …, XP.
If the streams are b values apart, then stream i could defined by starting
seed:

Older generators: b = 105; Newer generators: b = 1037.
A single random-number generator with k streams can act like k
distinct virtual random-number generators
To compare two or more alternative systems.

Advantageous to dedicate portions of the pseudo-random number
sequence to the same purpose in each of the simulated systems.

)1(−= ibi XS

7

13

Tests for Random Numbers

Two categories:
Testing for uniformity:

H0: Ri ~ U[0,1]
H1: Ri ~ U[0,1]

Failure to reject the null hypothesis, H0, means that evidence of
non-uniformity has not been detected.

Testing for independence:
H0: Ri ~ independently
H1: Ri ~ independently

Failure to reject the null hypothesis, H0, means that evidence of
dependence has not been detected.

Level of significance α, the probability of rejecting H0 when it
is true: α = P(reject H0|H0 is true)

/

/

14

Tests for Random Numbers

When to use these tests:
If a well-known simulation languages or random-number
generators is used, it is probably unnecessary to test
If the generator is not explicitly known or documented, e.g.,
spreadsheet programs, symbolic/numerical calculators, tests
should be applied to many sample numbers.

Types of tests:
Theoretical tests: evaluate the choices of m, a, and c without
actually generating any numbers
Empirical tests: applied to actual sequences of numbers
produced. Our emphasis.

8

15

Frequency Tests [Tests for RN]

Test of uniformity
Two different methods:

Kolmogorov-Smirnov test
Chi-square test

16

Kolmogorov-Smirnov Test [Frequency Test]

Compares the continuous cdf, F(x), of the uniform
distribution with the empirical cdf, SN(x), of the N sample
observations.

We know:
If the sample from the RN generator is R1, R2, …, RN, then the
empirical cdf, SN(x) is:

Based on the statistic: D = max| F(x) - SN(x)|
Sampling distribution of D is known (a function of N, tabulated in
Table A.8.)

A more powerful test, recommended.

10 ,)(≤≤= xxxF

N
xRRRxS n

N
≤

=
 are which ,...,, ofnumber)(21

9

17

Kolmogorov-Smirnov Test [Frequency Test]

Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14,
0.05, 0.93.

Step 1:

Step 2:

Step 3: D = max(D+, D-) = 0.26

Step 4: For α = 0.05,

Dα = 0.565 > D

Hence, H0 is not rejected.

Arrange R(i) from
smallest to largest

D+ = max {i/N – R(i)}

D- = max {R(i) - (i-1)/N}
0.130.210.04-0.05R(i) – (i-1)/N

0.07-0.160.260.15i/N – R(i)

1.000.800.600.400.20i/N

0.930.810.440.140.05R(i)

18

Chi-square test [Frequency Test]

Chi-square test uses the sample statistic:

Approximately the chi-square distribution with n-1 degrees of
freedom (where the critical values are tabulated in Table A.6)
For the uniform distribution, Ei, the expected number in the each
class is:

Valid only for large samples, e.g. N >= 50

∑
=

−
=Χ

n

i i

ii

E
EO

1

2
2
0

)(

nobservatio of # total theis N where,
n
NEi =

n is the # of classes

Oi is the observed
in the ith class

Ei is the expected
in the ith class

10

19

Tests for Autocorrelation [Tests for RN]

Testing the autocorrelation between every m numbers
(m is a.k.a. the lag), starting with the ith number

The autocorrelation ρim between numbers: Ri, Ri+m, Ri+2m,
Ri+(M+1)m

M is the largest integer such that

Hypothesis:

If the values are uncorrelated:
For large values of M, the distribution of the estimator of ρim,
denoted is approximately normal.

 N)m (Mi ≤++ 1

imρ̂

dependent are numbers if

tindependen are numbers if

 ,0 :
 ,0 :

1

0

≠
=

im

im

H
H

ρ
ρ

20

Tests for Autocorrelation [Tests for RN]

Test statistics is:

Z0 is distributed normally with mean = 0 and variance = 1, and:

If ρim > 0, the subsequence has positive autocorrelation
High random numbers tend to be followed by high ones, and vice versa.

If ρim < 0, the subsequence has negative autocorrelation
Low random numbers tend to be followed by high ones, and vice versa.

im

imZ
ρσ

ρ

ˆ
0 ˆ

ˆ
=

)(M
Mσ

.RR
M

ρ

imρ

M

k
)m(kikmiim

112
713ˆ

250
1

1ˆ
0

1

+
+

=

−

+

= ∑
=

+++

11

21

Example [Test for Autocorrelation]

Test whether the 3rd, 8th, 13th, and so on, for the
following output on P. 265.

Hence, α = 0.05, i = 3, m = 5, N = 30, and M = 4

From Table A.3, z0.025 = 1.96. Hence, the hypothesis is not
rejected.

516.1
1280.0
1945.0

128.0
1412

7)4(13ˆ

1945.0

250
)36.0)(05.0()05.0)(28.0(

)27.0)(33.0()33.0)(25.0()28.0)(23.0(
14

1ˆ

0

35

35

−=−=

=
+

+
=

−=

−

++

++
+

=

Z

)(
σ

.ρ

ρ

22

Shortcomings [Test for Autocorrelation]

The test is not very sensitive for small values of M,
particularly when the numbers being tests are on the low
side.
Problem when “fishing” for autocorrelation by performing
numerous tests:

If α = 0.05, there is a probability of 0.05 of rejecting a true
hypothesis.
If 10 independence sequences are examined,

The probability of finding no significant autocorrelation, by
chance alone, is 0.9510 = 0.60.
Hence, the probability of detecting significant autocorrelation
when it does not exist = 40%

12

23

Summary

In this chapter, we described:
Generation of random numbers
Testing for uniformity and independence

Caution:
Even with generators that have been used for years, some of
which still in used, are found to be inadequate.
This chapter provides only the basic
Also, even if generated numbers pass all the tests, some
underlying pattern might have gone undetected.

