Chapter 7
Random-Number Generation

Banks, Carson, Nelson & Nicol
Discrete-Event System Simulation

Purpose & Overview

- Discuss the generation of random numbers.

- Introduce the subsequent testing for randomness:
 - Frequency test
 - Autocorrelation test.
Properties of Random Numbers

Two important statistical properties:
- Uniformity
- Independence.

Random Number, \(R_i \), must be independently drawn from a uniform distribution with pdf:

\[
f(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & \text{otherwise} \end{cases}
\]

\[
E(R) = \int_0^1 x \, dx = \frac{x^2}{2} \bigg|_0^1 = \frac{1}{2}
\]

Generation of Pseudo-Random Numbers

“Pseudo”, because generating numbers using a known method removes the potential for true randomness.

Goal: To produce a sequence of numbers in \([0, 1]\) that simulates, or imitates, the ideal properties of random numbers (RN).

Important considerations in RN routines:
- Fast
- Portable to different computers
- Have sufficiently long cycle
- Replicable
- Closely approximate the ideal statistical properties of uniformity and independence.
Techniques for Generating Random Numbers

- Linear Congruential Method (LCM).
- Combined Linear Congruential Generators (CLCG).
- Random-Number Streams.

Linear Congruential Method

To produce a sequence of integers, X_1, X_2, \ldots between 0 and $m-1$ by following a recursive relationship:

$$X_{i+1} = (aX_i + c) \mod m, \quad i = 0, 1, 2, \ldots$$

- The selection of the values for a, c, m, and X_0 drastically affects the statistical properties and the cycle length.
- The random integers are being generated $[0, m-1]$, and to convert the integers to random numbers:

$$R_i = \frac{X_i}{m}, \quad i = 1, 2, \ldots$$
Example

Use $X_0 = 27$, $a = 17$, $c = 43$, and $m = 100$.
The X_i and R_i values are:

$X_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$, $R_1 = 0.02$;
$X_2 = (17 \times 2 + 32) \mod 100 = 77$, $R_2 = 0.77$;
$X_3 = (17 \times 77 + 32) \mod 100 = 52$, $R_3 = 0.52$;
...

Characteristics of a Good Generator

Maximum Density
- Such that the values assumed by R_i, $i = 1, 2, \ldots$, leave no large gaps on $[0,1]$
- Problem: Instead of continuous, each R_i is discrete
- Solution: a very large integer for modulus m
 - Approximation appears to be of little consequence

Maximum Period
- To achieve maximum density and avoid cycling.
 - Achieve by: proper choice of a, c, m, and X_0.

Most digital computers use a binary representation of numbers
- Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2.
Combined Linear Congruential Generators

[Techniques]

- Reason: Longer period generator is needed because of the increasing complexity of stimulated systems.
- Approach: Combine two or more multiplicative congruential generators.
- Let $X_{i,1}, X_{i,2}, \ldots, X_{i,k}$ be the i^{th} output from k different multiplicative congruential generators.
 - The j^{th} generator:
 - Has prime modulus m_j and multiplier a_j and period is $m_j - 1$
 - Produces integers X_{ij} is approx \sim Uniform on integers in $[1, m-1]$
 - $W_{ij} = X_{ij} - 1$ is approx \sim Uniform on integers in $[1, m-2]$

Suggested form:

$X_i = \left(\sum_{j=1}^{k} (-1)^{i-j} X_{ij} \right) \mod m_i - 1$

Hence, $R_i = \begin{cases} \frac{X_i}{m_i}, & X_i > 0 \\ \frac{m_i - 1}{m_i}, & X_i = 0 \end{cases}$

The coefficient: Performs the subtraction $X_{i,1}$

- The maximum possible period is:

$$P = \frac{(m_1 - 1)(m_2 - 1)\ldots(m_k - 1)}{2^{k-1}}$$
Combined Linear Congruential Generators

Example: For 32-bit computers, L’Ecuyer [1988] suggests combining $k = 2$ generators with $m_1 = 2,147,483,563$, $a_1 = 40,014$, $m_2 = 2,147,483,399$ and $a_2 = 20,692$. The algorithm becomes:

Step 1: Select seeds
- $X_{1,0}$ in the range $[1, 2,147,483,562]$ for the 1st generator
- $X_{2,0}$ in the range $[1, 2,147,483,398]$ for the 2nd generator.

Step 2: For each individual generator,
- $X_{1,j+1} = 40,014 X_{1,j} \mod 2,147,483,563$
- $X_{2,j+1} = 40,692 X_{1,j} \mod 2,147,483,399$.

Step 3: $X_{j+1} = (X_{1,j+1} - X_{2,j+1}) \mod 2,147,483,562$.

Step 4: Return
$$R_{j+1} = \begin{cases} \frac{X_{j+1}}{2,147,483,563}, & X_{j+1} > 0 \\ \frac{X_{j+1}}{2,147,483,562}, & X_{j+1} = 0 \end{cases}$$

Step 5: Set $j = j+1$, go back to step 2.

- Combined generator has period: $(m_1 - 1)(m_2 - 1)/2 \approx 2 \times 10^{18}$

Random-Numbers Streams

The seed for a linear congruential random-number generator:
- Is the integer value X_0 that initializes the random-number sequence.
- Any value in the sequence can be used to “seed” the generator.

A random-number stream:
- Refers to a starting seed taken from the sequence $X_0, X_1, ..., X_p$.
- If the streams are b values apart, then stream i could be defined by starting seed: $S_i = X_{b(i-1)}$.
- Older generators: $b = 10^5$; Newer generators: $b = 10^{37}$.

A single random-number generator with k streams can act like k distinct virtual random-number generators.

To compare two or more alternative systems.
- Advantageous to dedicate portions of the pseudo-random number sequence to the same purpose in each of the simulated systems.
Tests for Random Numbers

Two categories:

- Testing for uniformity:
 \[H_0: \ R_i \sim U[0,1] \]
 \[H_1: \ R_i \not\sim U[0,1] \]
 - Failure to reject the null hypothesis, \(H_0 \), means that evidence of non-uniformity has not been detected.

- Testing for independence:
 \[H_0: \ R_i \sim \text{independently} \]
 \[H_1: \ R_i \not\sim \text{independently} \]
 - Failure to reject the null hypothesis, \(H_0 \), means that evidence of dependence has not been detected.

- Level of significance \(\alpha \), the probability of rejecting \(H_0 \) when it is true: \[\alpha = P(\text{reject } H_0 | H_0 \text{ is true}) \]

When to use these tests:

- If a well-known simulation languages or random-number generators is used, it is probably unnecessary to test.
- If the generator is not explicitly known or documented, e.g., spreadsheet programs, symbolic/numerical calculators, tests should be applied to many sample numbers.

Types of tests:

- Theoretical tests: evaluate the choices of \(m, a, \) and \(c \) without actually generating any numbers.
- Empirical tests: applied to actual sequences of numbers produced. Our emphasis.
Frequency Tests

- Test of uniformity
- Two different methods:
 - Kolmogorov-Smirnov test
 - Chi-square test

Kolmogorov-Smirnov Test

- Compares the continuous cdf, $F(x)$, of the uniform distribution with the empirical cdf, $S_N(x)$, of the N sample observations.
 - We know: $F(x) = x$, $0 \leq x \leq 1$
 - If the sample from the RN generator is R_1, R_2, \ldots, R_N, then the empirical cdf, $S_N(x)$ is:
 $$S_N(x) = \frac{\text{number of } R_1, R_2, \ldots, R_N \text{ which are } \leq x}{N}$$

- Based on the statistic: $D = \max |F(x) - S_N(x)|$
 - Sampling distribution of D is known (a function of N, tabulated in Table A.8.)
 - A more powerful test, recommended.
Kolmogorov-Smirnov Test

Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14, 0.05, 0.93.

Step 1: Arrange $R(i)$ from smallest to largest

<table>
<thead>
<tr>
<th>i/N</th>
<th>$R(i)$ - $(i-1)/N$</th>
<th>0.05</th>
<th>0.21</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>i/N</td>
<td></td>
<td>0.15</td>
<td>0.26</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Step 2: $D_+ = \max \{i/N - R(i)\}$

| $i/N - R(i)$ | 0.13 | 0.21 | 0.07 | 0.16 | 0.04 | 0.21 | 0.13 |

Step 3: $D = \max (D_+, D_-) = 0.26$

Step 4: For $\alpha = 0.05$, $D_{0.05} = 0.565 > D$

Hence, H_0 is not rejected.

Chi-square test

Chi-square test uses the sample statistic:

$$\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

- n is the # of classes
- O_i is the observed # in the i^{th} class
- E_i is the expected # in the i^{th} class

Approximately the chi-square distribution with $n-1$ degrees of freedom (where the critical values are tabulated in Table A.6)

For the uniform distribution, E_i the expected number in each class is:

$$E_i = \frac{N}{n}, \quad \text{where } N \text{ is the total } # \text{ of observation}$$

Valid only for large samples, e.g. $N \geq 50$
Tests for Autocorrelation

Testing the autocorrelation between every m numbers (m is a.k.a. the lag), starting with the ith number

- The autocorrelation ρ_{im} between numbers: $R_i, R_{i+m}, R_{i+2m}, \ldots, R_{i+(M+1)m}$
- M is the largest integer such that $i + (M + 1)m \leq N$

Hypothesis:

$H_0 : \rho_{im} = 0$, if numbers are independent
$H_1 : \rho_{im} \neq 0$, if numbers are dependent

If the values are uncorrelated:

- For large values of M, the distribution of the estimator of ρ_{im}, denoted $\hat{\rho}_{im}$, is approximately normal.

Test statistics is:

$$Z_0 = \frac{\hat{\rho}_{im}}{\hat{\sigma}_{\hat{\rho}_{im}}}$$

- Z_0 is distributed normally with mean $= 0$ and variance $= 1$, and:

$$\hat{\rho}_{im} = \frac{1}{M + 1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\hat{\sigma}_{\hat{\rho}_{im}} = \frac{\sqrt{13M + 7}}{12(M + 1)}$$

- If $\rho_{im} > 0$, the subsequence has positive autocorrelation
- High random numbers tend to be followed by high ones, and vice versa.

- If $\rho_{im} < 0$, the subsequence has negative autocorrelation
- Low random numbers tend to be followed by high ones, and vice versa.
Example

- Test whether the 3rd, 8th, 13th, and so on, for the following output on P. 265.
 - Hence, \(\alpha = 0.05, i = 3, m = 5, N = 30, \) and \(M = 4 \)
 \[
 \hat{\rho}_{s5} = \frac{1}{4+1} \left[\frac{(0.23)(0.28) + (0.25)(0.33) + (0.33)(0.27)}{1} \right] - 0.25
 = -0.1945
 \]
 \[
 \sigma_{\hat{\rho}_{s5}} = \frac{\sqrt{13(4) + 7}}{12(4+1)} = 0.128
 \]
 \[
 Z_0 = -\frac{0.1945}{0.1280} = -1.516
 \]
 - From Table A.3, \(z_{0.025} = 1.96 \). Hence, the hypothesis is not rejected.

Shortcomings

- The test is not very sensitive for small values of \(M \), particularly when the numbers being tested are on the low side.
- Problem when “fishing” for autocorrelation by performing numerous tests:
 - If \(\alpha = 0.05 \), there is a probability of 0.05 of rejecting a true hypothesis.
 - If 10 independence sequences are examined,
 - The probability of finding no significant autocorrelation, by chance alone, is \(0.95^{10} = 0.60 \).
 - Hence, the probability of detecting significant autocorrelation when it does not exist = 40%
Summary

In this chapter, we described:
- Generation of random numbers
- Testing for uniformity and independence

Caution:
- Even with generators that have been used for years, some of which still in used, are found to be inadequate.
- This chapter provides only the basic
- Also, even if generated numbers pass all the tests, some underlying pattern might have gone undetected.