Chapter 9
Input Modeling

Banks, Carson, Nelson & Nicol
Discrete-Event System Simulation

Purpose & Overview

- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
 - Collect data from the real system
 - Identify a probability distribution to represent the input process
 - Choose parameters for the distribution
 - Evaluate the chosen distribution and parameters for goodness of fit.
Data Collection

- One of the biggest tasks in solving a real problem. GIGO – garbage-in-garbage-out
- Suggestions that may enhance and facilitate data collection:
 - Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
 - Analyze the data as it is being collected: check adequacy
 - Combine homogeneous data sets, e.g. successive time periods, during the same time period on successive days
 - Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
 - Check for relationship between variables, e.g. build scatter diagram
 - Check for autocorrelation
 - Collect input data, not performance data

Identifying the Distribution

- Histograms
- Selecting families of distribution
- Parameter estimation
- Goodness-of-fit tests
- Fitting a non-stationary process
A frequency distribution or histogram is useful in determining the shape of a distribution. The number of class intervals depends on:
- The number of observations
- The dispersion of the data
- Suggested: the square root of the sample size

For continuous data:
- Corresponds to the probability density function of a theoretical distribution

For discrete data:
- Corresponds to the probability mass function

If few data points are available: combine adjacent cells to eliminate the ragged appearance of the histogram

Vehicle Arrival Example: # of vehicles arriving at an intersection between 7 am and 7:05 am was monitored for 100 random workdays.

<table>
<thead>
<tr>
<th>Arrivals per Period</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

There are ample data, so the histogram may have a cell for each possible value in the data range.
Selecting the Family of Distributions

[Identifying the distribution]

A family of distributions is selected based on:
- The context of the input variable
- Shape of the histogram

Frequently encountered distributions:
- Easier to analyze: exponential, normal and Poisson
- Harder to analyze: beta, gamma and Weibull

Use the physical basis of the distribution as a guide, for example:
- Binomial: # of successes in n trials
- Poisson: # of independent events that occur in a fixed amount of time or space
- Normal: dist’n of a process that is the sum of a number of component processes
- Exponential: time between independent events, or a process time that is memoryless
- Weibull: time to failure for components
- Discrete or continuous uniform: models complete uncertainty
- Triangular: a process for which only the minimum, most likely, and maximum values are known
- Empirical: resamples from the actual data collected
Selecting the Family of Distributions

- Remember the physical characteristics of the process
 - Is the process naturally discrete or continuous valued?
 - Is it bounded?
- No “true” distribution for any stochastic input process
- Goal: obtain a good approximation

Quantile-Quantile Plots

- Q-Q plot is a useful tool for evaluating distribution fit
- If X is a random variable with cdf F, then the q-quantile of X is the γ such that
 \[F(\gamma) = P(X \leq \gamma) = q, \quad \text{for } 0 < q < 1 \]
- When F has an inverse, $\gamma = F^{-1}(q)$
- Let $\{x_i, i = 1, 2, \ldots, n\}$ be a sample of data from X and $\{y_j, j = 1, 2, \ldots, n\}$ be the observations in ascending order:
 \[y_j \text{ is approximately } F^{-1}\left(\frac{j - 0.5}{n}\right) \]
 where j is the ranking or order number
Quantile-Quantile Plots [Identifying the distribution]

- The plot of y_j versus $F^{-1}\left(\frac{j-0.5}{n}\right)$ is
 - Approximately a straight line if F is a member of an appropriate family of distributions
 - The line has slope 1 if F is a member of an appropriate family of distributions with appropriate parameter values

Example: Check whether the door installation times follows a normal distribution.
- The observations are now ordered from smallest to largest:

<table>
<thead>
<tr>
<th>j</th>
<th>Value</th>
<th>j</th>
<th>Value</th>
<th>j</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99.55</td>
<td>6</td>
<td>99.98</td>
<td>11</td>
<td>100.26</td>
</tr>
<tr>
<td>2</td>
<td>99.56</td>
<td>7</td>
<td>100.02</td>
<td>12</td>
<td>100.27</td>
</tr>
<tr>
<td>3</td>
<td>99.62</td>
<td>8</td>
<td>100.06</td>
<td>13</td>
<td>100.33</td>
</tr>
<tr>
<td>4</td>
<td>99.65</td>
<td>9</td>
<td>100.17</td>
<td>14</td>
<td>100.41</td>
</tr>
<tr>
<td>5</td>
<td>99.79</td>
<td>10</td>
<td>100.23</td>
<td>15</td>
<td>100.47</td>
</tr>
</tbody>
</table>

- y_j are plotted versus $F^{-1}\left(\frac{j-0.5}{n}\right)$ where F has a normal distribution with the sample mean (99.99 sec) and sample variance (0.28322 sec²)
Example (continued): Check whether the door installation times follow a normal distribution.

- Straight line, supporting the hypothesis of a normal distribution.
- Superimposed density function of the normal distribution.

Consider the following while evaluating the linearity of a q-q plot:
- The observed values never fall exactly on a straight line.
- The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line.
- Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.

Q-Q plot can also be used to check homogeneity:
- Check whether a single distribution can represent both sample sets.
- Plotting the order values of the two data samples against each other.
Parameter Estimation [Identifying the distribution]

- Next step after selecting a family of distributions
- If observations in a sample of size n are X_1, X_2, \ldots, X_n (discrete or continuous), the sample mean and variance are:

 $$
 \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}, \quad S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}{n-1}
 $$

- If the data are discrete and have been grouped in a frequency distribution:

 $$
 \overline{X} = \frac{\sum_{j=1}^{c} f_j X_j}{n}, \quad S^2 = \frac{\sum_{j=1}^{c} f_j X_j^2 - n\overline{X}^2}{n-1}
 $$

 where f_j is the observed frequency of value X_j

Parameter Estimation [Identifying the distribution]

- When raw data are unavailable (data are grouped into class intervals), the approximate sample mean and variance are:

 $$
 \overline{X} = \frac{\sum_{j=1}^{c} f_j X_j}{n}, \quad S^2 = \frac{\sum_{j=1}^{c} f_j X_j^2 - n\overline{X}^2}{n-1}
 $$

 where f_j is the observed frequency of in the jth class interval m_j is the midpoint of the jth interval, and c is the number of class intervals

- A parameter is an unknown constant, but an estimator is a statistic.
Parameter Estimation

Vehicle Arrival Example (continued): Table in the histogram example on slide 6 (Table 9.1 in book) can be analyzed to obtain:

\[n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1, \ldots, \]

and \(\sum_i f_i X_i = 364 \), and \(\sum_i f_i X_i^2 = 2080 \)

☐ The sample mean and variance are

\[
\bar{X} = \frac{364}{100} = 3.64 \\
S^2 = \frac{2080 - 100 \times (3.64)^2}{99} = 7.63
\]

☐ The histogram suggests \(X \) to have a Possion distribution

☐ However, note that sample mean is not equal to sample variance.

☐ Reason: each estimator is a random variable, is not perfect.

Goodness-of-Fit Tests

Conduct hypothesis testing on input data distribution using:

☐ Kolmogorov-Smirnov test

☐ Chi-square test

☐ No single correct distribution in a real application exists.

☐ If very little data are available, it is unlikely to reject any candidate distributions

☐ If a lot of data are available, it is likely to reject all candidate distributions
Chi-Square test

- **Intuition**: comparing the histogram of the data to the shape of the candidate density or mass function
- **Valid for large** sample sizes when parameters are estimated by maximum likelihood
- By arranging the n observations into a set of k class intervals or cells, the test statistics is:

$$
\chi_0^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}
$$

which **approximately** follows the chi-square distribution with $k-s-1$ degrees of freedom, where s = # of parameters of the hypothesized distribution estimated by the sample statistics.

Expected Frequency

$E_i = n^*p_i$

where p_i is the theoretical prob. of the ith interval.

Suggested Minimum = 5

Chi-Square test

- The hypothesis of a chi-square test is:

H_0: The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).

H_1: The random variable X does not conform.
Chi-Square test [Goodness-of-Fit Tests]

Vehicle Arrival Example (continued):

\[H_0: \text{the random variable is Poisson distributed.} \]
\[H_1: \text{the random variable is not Poisson distributed.} \]

Degree of freedom is \(k-s-1 = 7-1-1 = 5 \), hence, the hypothesis is rejected at the 0.05 level of significance.

\[\chi^2_0 = 27.68 > \chi^2_{0.05, 5} = 11.1 \]
Kolmogorov-Smirnov Test

- Intuition: formalize the idea behind examining a q-q plot
- Recall from Chapter 7.4.1:
 - The test compares the continuous cdf, \(F(x) \), of the hypothesized distribution with the empirical cdf, \(S_n(x) \), of the \(N \) sample observations.
 - Based on the maximum difference statistics (Tabulated in A.8):
 \[D = \max| F(x) - S_n(x) | \]
- A more powerful test, particularly useful when:
 - Sample sizes are small,
 - No parameters have been estimated from the data.

p-Values and “Best Fits”

- \(p-value \) for the test statistics
 - The significance level at which one would just reject \(H_0 \) for the given test statistic value.
 - A measure of fit, the larger the better
 - Large \(p-value \): good fit
 - Small \(p-value \): poor fit

Vehicle Arrival Example (cont.):
- \(H_0 \): data is Poisson
- Test statistics: \(\chi^2 = 27.68 \), with 5 degrees of freedom
- \(p-value = 0.00004 \), meaning we would reject \(H_0 \) with 0.00004 significance level, hence Poisson is a poor fit.
Consider the time-series model:

\[X_t = \begin{cases}
\phi X_{t-1}, & \text{with probability } \phi \\
\phi X_{t-1} + \varepsilon_t, & \text{with probability } 1-\phi
\end{cases} \quad \text{for } t = 2, 3, \ldots \]

where \(\varepsilon_2, \varepsilon_3, \ldots \) are i.i.d. exponentially distributed with \(\mu = 1/\lambda \), and \(0 \leq \phi < 1 \)

If \(X_t \) is chosen appropriately, then
- \(X_1, X_2, \ldots \) are exponentially distributed with \(\text{mean} = 1/\lambda \)
- Autocorrelation \(\rho_h = \phi^h \), and only positive correlation is allowed.

To estimate \(\phi, \lambda \):

\[\hat{\lambda} = 1/X \quad \hat{\phi} = \frac{\text{cov}(X_t, X_{t+1})}{\hat{\sigma}^2} \]

where \(\text{cov}(X_t, X_{t+1}) \) is the lag-1 autocovariance

Summary

In this chapter, we described the 4 steps in developing input data models:
- Collecting the raw data
- Identifying the underlying statistical distribution
- Estimating the parameters
- Testing for goodness of fit