Trees
Terminology

- Trees are hierarchical
 - “parent-child” relationship exits
 - A is the parent of B
 - B is a child of A
 - B and C are siblings
 - Generalized to ancestor and descendant
 - root: the only node without parent
 - leaf: a node has no children
 - Subtree: any node together with all of its descendents
General Tree v.s. Binary Tree

• A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets:
 – A node r, the root
 – Sets that are general trees, called subtrees of r

• A binary tree is a set T of nodes such that
 – T is empty, or
 – T is partitioned into 3 disjoint subsets:
 • A node r, the root
 • 2 possibly empty sets that are binary trees, called left and right subtrees of r
General Tree v.s. Binary Tree

(a) President
 - VP Marketing
 - Director Media Relations
 - VP Manufacturing
 - Director Sales
 - VP Personnel

(b) Caroline
 - John
 - Joseph
 - Jacqueline
 - Rose
Represent Algebraic Expressions using Binary Tree

\[a - b \]
(a)

\[a - b / c \]
(b)

\[(a - b) \times c \]
(c)
Binary Search Tree

- A binary search tree is a binary tree that is sorted according to the values in its node.
- For each node n
 - n’s value is greater than all values in its left subtree
 - n’s value is less than all values in its right subtree
A Binary Search Tree of Names

Jane

Bob

Alan

Ellen

Tom

Nancy

Wendy
Height of Trees

- Trees come in many shapes

- Height of any tree: number of nodes on the longest path from the root to a leaf
Full Binary Trees

- Full binary tree
 - All nodes that are at a level less than h have two children, where h is the height

- Each node has left and right subtrees of the same height
Full Binary Tree

• If the height is $h > 0$
 – The number of leaves is $2^{(h-1)}$
 – The number of nodes is $2^h - 1$

• If the number of nodes is $N > 0$
 – The height is $\log(N+1)$ with base 2
 – The number of leaves is $(N+1)/2$

• Has many leaves as possible among binary trees of height h
Complete Binary Trees

- Complete binary tree
 - A binary tree full down to level $h-1$, with level h filled in from left to right
Balanced Binary Trees

• Balanced binary tree
 – The height of any node’s right subtree differs from the height of the node’s left subtree by no more than 1
 – A complete binary tree is balanced
ADT Binary Tree

• Operations
 – Create/destroy a tree
 – Determine/change root
 – Determine emptiness
 – Attach/Detach left/right subtree to root
 – Return a copy of the left/right subtree of root
 – Traverse the nodes in preorder, inorder, or postorder

<table>
<thead>
<tr>
<th>Binary tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>root</td>
</tr>
<tr>
<td>left subtree</td>
</tr>
<tr>
<td>right subtree</td>
</tr>
<tr>
<td>createTree()</td>
</tr>
<tr>
<td>destroyBinaryTree()</td>
</tr>
<tr>
<td>isEmpty()</td>
</tr>
<tr>
<td>getData()</td>
</tr>
<tr>
<td>setData()</td>
</tr>
<tr>
<td>attachRight()</td>
</tr>
<tr>
<td>attachLeftSubtree()</td>
</tr>
<tr>
<td>attachRightSubtree()</td>
</tr>
<tr>
<td>detachLeftSubtree()</td>
</tr>
<tr>
<td>detachRightSubtree()</td>
</tr>
<tr>
<td>getLeftSubtree()</td>
</tr>
<tr>
<td>getRightSubtree()</td>
</tr>
<tr>
<td>preorderTraverse()</td>
</tr>
<tr>
<td>inorderTraverse()</td>
</tr>
<tr>
<td>postorderTraverse()</td>
</tr>
</tbody>
</table>
Build a Tree

Tree1.setRootData('F');
Tree1.attachLeft('G');

Tree2.setRootData('D');
Tree2.attachLeftSubTree(tree1);

Tree3.setRootData('B');
Tree3.attachLeftSubtree(tree2);
Tree3.attachRight('E');

Tree4.setRootData('C');
binTree.createBinaryTree('A', tree3, tree4);