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Abstract

In this paper we analyze the scalability of a number of load balancing algorithms which can
be applied to problems that have the following characteristics : the work done by a processor
can be partitioned into independent work pieces; the work pieces are of highly variable sizes;
and it is not possible (or very difficult) to estimate the size of total work at a given processor.
Such problems require a load balancing scheme that distributes the work dynamically among
different processors.

Our goal here is to determine the most scalable load balancing schemes for different archi-
tectures such as hypercube, mesh and network of workstations. For each of these architectures,
we establish lower bounds on the scalability of any possible load balancing scheme. We present
the scalability analysis of a number of load balancing schemes that have not been analyzed
before. This gives us valuable insights into their relative performance for different problem and
architectural characteristics. For each of these architectures, we are able to determine near
optimal load balancing schemes. Results obtained from implementation of these schemes in the
context of the Tautology Verification problem on the Ncube/27M ! multicomputer are used to
validate our theoretical results for the hypercube architecture. These results also demonstrate
the accuracy and viability of our framework for scalability analysis.

1 Introduction

Load balancing is perhaps the central aspect of parallel computing. Before a problem can be exe-
cuted on a parallel computer, the work to be done has to be partitioned among different processors.
Due to uneven processor utilization, load imbalance can cause poor efficiency. This paper investi-
gates the problem of load balancing in multiprocessors for those parallel algorithms that have the

following characteristics.
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e The work available at any processor can be partitioned into independent work pieces as long
as it is more than some non-decomposable unit.

o The cost of splitting and transferring work to another processor is not excessive. (i.e. the cost
associated with transferring a piece of work is much less than the computation cost associated
with it.)

¢ A reasonable work splitting mechanism is available; i.e., if work w at one processor is par-
titioned in 2 parts ¥w and (1 — ¢)w, then 1 — a > ¢ > a, where a is an arbitrarily small
constant.

e It is not possible (or is very difficult) to estimate the size of total work at a given processor.

Although, in such parallel algorithms, it is easy to partition the work into arbitrarily many
parts, these parts can be of widely differing sizes. Hence after an initial distribution of work among
P processors, some processors may run out of work much sooner than others; therefore a dynamic
balancing of load is needed to transfer work from processors that have work to processors that are
idle. Since none of the processors (that have work) know how much work they have, load balancing
schemes which require this knowledge (eg. [17, 19]) are not applicable. The performance of a load
balancing scheme is dependent upon the degree of load balance achieved and the overheads due to
load balancing.

Work created in the execution of many tree search algorithms used in artificial intelligence
and operations research [22, 31] and many divide-and-conquer algorithms [16] satisfy all the re-
quirements stated above. As an example, consider the problem of searching a state-space tree in
depth-first fashion to find a solution. The state space tree can be easily split up into many parts
and each part can be assigned to a different processor. Although it is usually possible to come up
with a reasonable work splitting scheme [29], different parts can be of radically different sizes, and
in general there is no way of estimating the size of a search tree.

A number of dynamic load balancing strategies that are applicable to problems with these char-
acteristics have been developed [3, 7, 8, 10, 28, 29, 30, 33, 35, 36, 40, 41]. Many of these schemes
have been experimentally tested on some physical parallel architectures. From these experimen-
tal results, it is difficult to ascertain relative merits of different schemes. The reason is that the
performance of different schemes may be impacted quite differently by changes in hardware char-
acteristics (such as interconnection network, CPU speed, speed of communication channels etc.),
number of processors, and the size of the problem instance being solved [21]. Hence any conclu-
sions drawn on a set of experimental results are invalidated by changes in any one of the above
parameters. Scalability analysis of a parallel algorithm and architecture combination is very useful
in extrapolating these conclusions [14, 15, 21, 23]. It may be used to select the best architecture -
algorithm combination for a problem under different constraints on the growth of the problem size
and the number of processors. It may be used to predict the performance of a parallel algorithm
and a parallel architecture for a large number of processors from the known performance on fewer
processors. Scalability analysis can also predict the impact of changing hardware technology on the
performance, and thus helps in designing better parallel architectures for solving various problems.

Kumar and Rao have developed a scalability metric, called isoefficiency , which relates the
problem size to the number of processors necessary for an increase in speedup in proportion to the



number of processors used [23]. An important feature of isoefficiency analysis is that it succinctly
captures the effects of characteristics of the parallel algorithm as well as the parallel architecture
on which it is implemented, in a single expression. The isoefficiency metric has been found to
be quite useful in characterizing scalability of a number of algorithms [13, 25, 34, 37, 42, 43]. In
particular, Kumar and Rao used isoefliciency analysis to characterize the scalability of some load
balancing schemes on the shared-memory, ring and hypercube architectures[23] and validated it
experimentally in the context of the 15-puzzle problem.

Our goal here is to determine the most scalable load balancing schemes for different architectures
such as hypercube, mesh and network of workstations. For each architecture, we establish lower
bounds on the scalability of any possible load balancing scheme. We present the scalability analysis
of a number of load balancing schemes that have not been analyzed before. From this we gain
valuable insights about which schemes can be expected to perform better under what problem and
architecture characteristics. For each of these architectures, we are able to determine near optimal
load balancing schemes. In particular, some of the algorithms analyzed here for hypercubes are
more scalable than those presented in [23]. Results obtained from implementation of these schemes
in the context of the Tautology Verification problem on the Ncube/27M multicomputer are used
to validate our theoretical results for the hypercube architecture. The paper also demonstrates the
accuracy and viability of our framework for scalability analysis.

Section 2 introduces the various terms used in the analysis. Section 3 presents the isoefliciency
metric used for evaluating scalability. Section 4 reviews receiver initiated load balancing schemes,
which are analyzed in Section 5. Section 6 presents sender initiated schemes and discusses their
scalability. Section 7 addresses the effect of variable work transfer cost on overall scalability. Section
8 presents experimental results. Section 9 contains summary of results and suggestions for future
work.

Some parts of this paper have appeared in [11] and [24].

2 Definitions and Assumptions

In this section, we introduce some assumptions and basic terminology necessary to understand the

isoefficiency analysis.

1. Problem size W: the amount of essential computation (7.e., the amount of computation done
by the best sequential algorithm) that needs to be performed to solve a problem instance.

2. Number of processors P: number of identical processors in the ensemble being used to solve

the given problem instance.

3. Unit Computation time U.y.: the time taken for one unit of work. In parallel depth-first

search, the unit of work is a single node expansion.

4. Computation time T,4.: is the sum of the time spent by all processors in useful computation.
(Useful computation is that computation that would also have been performed by the best
sequential algorithm.) Clearly, since in solving a problem instance, we need to do W units of

work, and each unit of work takes U,y time,



Tcalc = Ucqlc X w

5. Running time T’p: the execution time on a P processor ensemble.

6. Overhead T,: the sum of the time spent by all processors in communicating with other
processors, waiting for messages, time in starvation, etc. For a single processor, T, = 0.

Clearly,
Tegie +1, =P x1p

7. Speedup 5: the ratio Tfp‘;lc.

It is the effective gain in computation speed achieved by using P processors in parallel on a

given instance of a problem.

8. Efficiency F: the speedup divided by P. F denotes the effective utilization of computing

resources.
Tca c
o !
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9. Unit Communication time U,y the mean time taken for getting some work from another
processor. Ugomsm depends upon the size of the message transferred, the distance between
the donor and the requesting processor, and the communication speed of the underlying
hardware. For simplicity, in the analysis of Sections 5 and 6, we assume that the message
size is fixed. Later, in Section 7, we demonstrate the effect of variable message sizes on the

overall performance of the schemes.

3 Isoefficiency function : A measure of scalability

If a parallel algorithm is used to solve a problem instance of a fixed size, then the efficiency
decreases as number of processors P increases. The reason is that the total overhead increases
with P. For many parallel algorithms, for a fixed P, if the problem size W is increased, then the
efficiency becomes higher (and approaches 1), because the total overhead grows slower than W.
For these parallel algorithms, the efficiency can be maintained at a desired value (between 0 and
1) with increasing number of processors, provided the problem size is also increased. We call such
algorithms scalable parallel algorithms.

Note that for a given parallel algorithm, for different parallel architectures, the problem size
may have to increase at different rates w.r.t. P in order to maintain a fixed efficiency. The rate
at which W is required to grow w.r.t. P to keep the efficiency fixed is essentially what determines
the degree of scalability of the parallel algorithm for a specific architecture. For example, if W

is required to grow exponentially w.r.t. P, then the algorithm-architecture combination is poorly



scalable. The reason for this is that in this case it would be difficult to obtain good speedups on the
architecture for a large number of processors, unless the problem size being solved is enormously
large. On the other hand, if W needs to grow only linearly w.r.t. P, then the algorithm-architecture
combination is highly scalable and can easily deliver linearly increasing speedups with increasing
number of processors for reasonable increments in problem sizes. If W needs to grow as f(P) to
maintain an efficiency £, then f(P) is defined to be the isoefficiency function for efficiency F£
and the plot of f(P) w.r.t. P is defined to be the isoefficiency curve for efficiency E.

As shown in [21], an important property of a linear isoefficiency function, is that the problem size
can be increased linearly with the number of processors while maintaining a fixed execution time if
and only if the isoefficiency function is ©(P). Also, parallel systems with near linear isoefficiencies
enable us to solve increasingly difficult problem instances in only moderately greater time. This is
important in many domains (e.g. real time systems) in which we have only finite time in which to
solve problems.

A lower bound on any isoefficiency function is that asymptotically, it should be at least linear.
This follows from the fact that all problems have a sequential (i.e. non decomposable) component.
Hence any algorithm which shows a linear isoefliciency on some architecture is optimally scalable
on that architecture. Algorithms with isoefficiencies of O(Plog® P), for small constant c, are also
reasonably optimal for practical purposes. For a more rigorous discussion on the isoefliciency metric
and scalability analysis, the reader is referred to [23, 21].

3.1 Lower bounds on isoefficiency functions for load balancing algorithms for
different architectures

For some algorithm - architecture combinations, it is possible to obtain a tighter lower bound
than O(P) on the isoefficiency. Consider a problem whose run time on a parallel architecture
(comprising of P processors ) is given by Tp. By definition, speedup for this problem is given by

T : T : T
%fc and efficiency by ﬁ. Thus for efficiency to be a constant, P;“:}; must be constant and

thus 7.1 should grow as (P x Tp). Since Teqre = W X Usgre, W oshould also grow as O(P x Tp).
Thus, if Tp has a lower bound of Q(G/(P)), we have a lower bound of Q(P x G(P)) on the on the
isoefficiency function.

For the hypercube architecture, it takes at least ©(log P) time for the work to propagate to
all the processors (since the farthest processors are log P hops away). Thus the execution time for
any load balancing algorithm running on a hypercube is lower bounded by Q(log P). Hence the
isoefficiency function has a lower bound of Q(Plog P). On a mesh, it would take Q(v/P) time for
the work to propagate to all processors and consequently the lower bound on isoefliciency is given
by Q(P5). For the network of workstations, since for all processors to get work, there have to be
at least P messages, and these have to be sent sequentially over the network, the execution time is
lower bounded by Q(P) and the lower bound on isoefficiency is given by Q(P?).

4 Receiver Initiated Load Balancing Algorithms

In this section, we briefly review receiver initiated load balancing algorithms that are analyzed
in section 5. Many of these schemes have been presented in the context of specific architectures
[28, 8, 29, 30, 40]. These schemes are characterized by the fact that the work splitting is performed
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Figure 1: State diagram describing the generic parallel formulation.

only when an idle processor (receiver) requests for work. In all these schemes, when a processor
runs out of work, it generates a request for work. The selection of the target of this work request
is what differentiates all these different load balancing schemes. The selection of the target for a
work request should be such as to minimize the total number of work requests and transfers as well
as load imbalance among processors.

The basic load balancing algorithm is shown in the state diagram in Figure 4. At any given
instant of time, some of the processors are busy (i.e. they have work) and the others are idle (i.e.
they are trying to get work). An idle processor selects another processor as a target and sends it a
work request. If the idle processor receives some work from the target processor, it becomes busy. If
it receives a reject message (implying that there was no work available at the requested processor),
it selects another target and sends it a work request. This is repeated until the processor gets work,
or all the processors become idle. While in the idle state, if a processor receives a work request, it
returns a reject message.

In the busy state, the processor does a fixed amount of work and checks for any pending



work — request messages. If a work — request message was received then the work available at the
processor is partitioned into two parts and one of the parts is given to the requesting processor. If
too little work is available, then a reject message is sent. When a processor exhausts its own work,
it goes into the idle state.

A termination detection algorithm runs in the background. This signals termination whenever
a solution is found or all processors run out of work.

4.1 Asynchronous Round Robin (ARR)

In this scheme, each processor maintains an independent variable target. Whenever a processor
runs out of work, it reads the value of this target and sends a work request to that particular
processor. The value of the target is incremented (modulo P) each time its value is read and a
work request sent out. Initially, for each processor, the value of target is set to ((p + 1)moduloP)
where p is its processor identification number. Note that work requests can be generated by each
processor independent of the other processors; hence the scheme is simple, and has no bottlenecks.
However it is possible that work requests made by different processors around the same time may
be sent to the same processor. This is not desirable since ideally work requests should be spread
uniformly over all processors that have work.

4.2 Nearest Neighbor (NN)

In this scheme a processor, on running out of work, sends a work request to its immediate neighbors
in a round robin fashion. For example, on a hypercube, a processor will send requests only to its
log P neighbors. For networks in which distance between all pairs of processors is the same, this
scheme is identical to the Asynchronous Round Robin scheme. This scheme ensures locality of
communication for both work requests and actual work transfers. A potential drawback of the
scheme is that localized concentration of work takes a longer time to get distributed to other far

away processors.

4.3 Global Round Robin (GRR)

Let a global variable called TARGET be stored in processor 0. Whenever a processor needs work,
it requests and gets the value of TARGET; and processor 0 increments the value of this variable
by 1 (modulo P) before responding to another request. The processor needing work now sends
a request to the processor whose number is given by the value read from TARGET (i.e., the one
supplied by processor 0). This ensures that successive work requests originating in the system are
distributed evenly over all processors. A potential drawback of this scheme is that there will be
contention for accessing the value of TARGET.

4.4 GRR with Message combining. (GRR-M)

This scheme is a modified version of GRR that avoids contention over accessing TARGET. In this
scheme, all the requests to read the value of TARGET at processor 0 are combined at intermediate
processors. Thus the total number of requests that have to be handled by processor 0 is greatly
reduced. This technique of performing atomic increment operations on a shared variable, TARGET,



is essentially a software implementation of the fetch-and-add operation of [6]. To the best of our
knowledge, GRR-M has not been used for load balancing by any other researcher.

We illustrate this scheme by describing its implementation for a hypercube architecture. Figure
4.5 describes the operation of GRR-M for a hypercube multicomputer with P = 8. Here, we embed
a spanning tree on the hypercube rooted at processor zero. This can be obtained by complimenting
the bits of processor identification numbers in a particular sequence. We shall use the low to high
sequence. Every processor is at a leaf of the spanning tree. When a processor wants to atomically
read and increment TARGET, it sends a request up the spanning tree towards processor zero. An
internal node of the spanning tree holds a request from one of its children for at most é time before
it is sent to its parent. If a request comes from the other child within this time, it is combined
and sent up as a single request. If ¢ represents the number of increments combined, the resulting
increment on TARGET is ¢ and returned value for read is previous value of target. This is illustrated
by the figure where the total requested increment is 5 and the original value of TARGET, i.e. .,
percolates down the tree. The individual messages combined are stored in a table until the request
is granted. When read value of TARGET is sent back to an internal node, two values are sent down
to the left and right children if the value corresponds to a combined message. The two values can
be determined from the entries in the table corresponding to increments by the two sons.

A similar implementation can be formulated for other architectures.

4.5 Random Polling (RP).

This is the simplest load balancing strategy where a processor requests a randomly selected pro-
cessor for work each time it runs out of work. The probability of selection of any processor is the

salne.

4.6 Scheduler Based Load Balancing (SB)

This scheme was proposed in [30] in the context of depth first search for test generation in VLSI
CAD applications. In this scheme, a processor is designated as a scheduler. The scheduler maintains
a queue (i.e. a FIFO list) called DONOR, of all possible processors which can donate work. Initially
DONOR contains just one processor which has all the work. Whenever a processor goes idle, it
sends a request to the scheduler. The scheduler then deletes this processor from the DONOR queue,
and polls the processors in DONOR in a round robin fashion until it gets work from one of the
processors. At this point, the recipient processor is placed at the tail of the queue and the work
received by the scheduler is forwarded to the requesting processor.

Like GRR, for this scheme too, successive work requests are sent to different processors. How-
ever, unlike GRR, a work request is never sent to any processor which is known to have no work.
The performance of this scheme can be degraded significantly by the fact that all messages ( includ-
ing messages containing actual work ) are routed through the scheduler. This poses an additional
bottleneck for work transfer. Hence we modified this scheme slightly so that the poll was still gen-
erated by the scheduler but the work was transferred directly to the requesting processor instead
of being routed through the scheduler. If the polled processor happens to be idle, it returns a
‘reject’ message to the scheduler indicating that it has no work to share. On receiving a ‘reject’,
the scheduler gets the next processor from the DONOR queue and generates another poll. It should
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Figure 2: Tllustration of message combining on an 8 processor hypercube.



be clear to the reader that the modified scheme has a strictly better performance compared to the
original scheme. This was also experimentally verified by us.

5 Scalability Analysis of Receiver Initiated Load Balancing Al-
gorithms

To analyze the scalability of aload balancing scheme, we need to compute 7, which is the extra work
done by the parallel formulation. Extra work done in any load balancing is due to communication
overheads (i.e. time spent in requesting for work and sending work), idle time (when processor is
waiting for work), time spent in termination detection, contention over shared resources etc.

For the receiver initiated schemes, the idle time is subsumed by the communication overheads
due to work requests and transfers. This follows from the fact that as soon as a processor becomes
idle, it selects a target for a work request and issues a request. The total time that it remains idle
is the time taken for this message to reach the target and for the reply to arrive. At this point,
either the processor becomes busy or it generates another work request. Thus the communication
overhead gives the order of time that a processor is idle.

The framework for setting upper bounds on overheads due to the communication overhead is
presented in Section 5.1. For isoefficiency terms due to termination, we can show the following
results. In the case of a network of workstations, we can implement a ring termination scheme,
which can be implemented in @(P) time. This contributes an isoefficiency term of ©(P?). For a
hypercube, we can embed a tree into the hypercube and termination tokens propagate up the tree.
It can be shown that this contributes an isoefficiency term of ©(FPlog P). In the case of a mesh,
we can propagate termination tokens along rows first and then along columns. This technique
contributes an isoefficiency term of @(P?). In each of these cases, the isoefficiency term is of the
same asymptotic order as the lower bound derived in Section 3.1.

5.1 A General Framework for Computing Upper Bounds on Communication

Due to the dynamic nature of the load balancing algorithms being analyzed, it is very difficult
to come up with a precise expression for the total communication overheads. In this Section, we
review a framework of analysis that provides us with an upper bound on these overheads. This
technique was originally developed in the context of Parallel Depth First Search in [8, 23].

We have seen that communication overheads are caused by work requests and work transfers.
The total number of work transfers can only be less than the total number of work requests;
hence the total number of work requests weighted with the total cost of one work request and
corresponding work transfer defines an upper bound on the total communication overhead. For
simplicity, in the rest of this section, we assume constant message sizes; hence the cost associated
with all the work requests generated defines an upper bound on the total communication overheads.

In all the techniques being analyzed here, the total work is dynamically partitioned among the
processors and processors work on disjoint parts independently, each executing the piece of work
it is assigned. Initially an idle processor polls around for work and when it finds a processor with
work of size W;, the work W; is split into disjoint pieces of size W; and Wj. As stated in the
introduction, the partitioning strategy can be assumed to satisfy the following property -

10



There is a constant a > 0 such that W; > aW; and W}, > aWV; .

Recall that in a transfer, work (w) available in a processor is split into two parts (aw and
(1 —a)w) and one part is taken away by the requesting processor. Hence after a transfer neither of
the two processors (donor and requester) have more than (1 —a)w work ( note that a is always less
than or equal t0 0.5 ). The process of work transfer continues until work available in every processor
is less than e. At any given time, there is some processor that has the maximum workload of all
processors. Whenever a processor receives a request for work, its local workload becomes smaller
(unless it is already less than €). If every processor is requested for work at least once, then we can
be sure that the maximum work at any of the processors has come down at least by a factor of
(1 — a). Let us assume that in every V(P) requests made for work, every processor in the system
is requested at least once. Clearly, V(P) > P. In general, V(P) depends on the load balancing
algorithm. Initially processor 0 has W units of work, and all other processors have no work.

After V(P) requests maximum work available in any processor is less than (1 — o)W

After 2V (P) requests maximum work available in any processor is less than (1 — a)*W

After (log 1 )V(P) requests maximum work available in any processor is less than e.
1—a

Hence total number of requests < V(P)log_+ W
1—a

To ~ Usorm * V(P)log_1 W (upper bound)
1—a
Tcalc = cach

Efficiency = N T

Teate
1

) Ucomm*V(P)logﬁW

+ Ueatcr W

Solving this for isoefficiency term due to communication gives us the relation

Ucomm
W~ V(P)log W

cale
W = O(V(P)log W) (1)

The isoefficiency defined by this term is the overall isoefficiency of the parallel system if it
asymptotically dominates all other terms (due to reasons other than the communication overhead).

5.2 Computation of V(P) for various load balancing schemes

Clearly, it can be seen that V(P) is O(P) for GRR and GRR-M, and as shown in [8, 23] it is
O(P?) for Asynchronous Round Robin techniques. The worst case for Asynchronous Round Robin
techniques is realized when all processors generate successive work requests at almost identical
instances of time and the initial value of counters at all processors is almost identical. Consider
the following (worst case) scenario. Assume that processor P — 1 had all the work and the local
counters of all the other processors (0 to P — 2) were pointing to processor 0. In such a case,
for processor P — 1 to receive a work request, one processor may have to request up to P — 1

11



processors and the remaining P — 2 processors in the meantime might have generated up to P —2
work requests (all processors except processor P — 1 and itself). Thus V(P) in this case is given by
(P—1)4 (P —2)(P—2),ie O(P?). The readers must note that this is only an upper bound on
the value of V(P), and the actual value of V(P) is between P and P?. For NN, V(P) is unbounded
for architectures such as the hypercube. That is why isoefficiency functions for NN are determined

in [23] using a different technique.

Random Polling

In the worst case, the value of V(P) is unbounded for random polling. Here we present an average
case analysis for computing the value of V(P).

Consider a system of P boxes. In each trial a box is picked up at random and marked off. We
are interested in mean number of trials required to mark all the boxes. In our algorithm, each trial
consists of a processor requesting another processor selected at random for work.

Let F(¢, P) represent a state of the system where i of the P boxes have been marked and i — P
have not been marked. Since the next box to be marked is picked at random, there is }% chance
that it will be a marked box and P];i chance that it will be an unmarked box. Hence the system
remains in F'(z, P) with a probability of }% and transits to F'(i + 1, P) with a probability of Pgi.
Let f(i, P) denote the average number of trials needed to change from state F(i, P) to F(P, P).
Obviously, V(P) = f(0, P).

We have ) p_i
. 1 . —1 .
f(lvp):F(l—l'f(lvp))—l_T(l—l'f(l—l_lvp))
P—-q . P—1 .
Tf(vp)_l—l_Tf(l—l_lvP)
fi P = = b fi 4 1,P)
1, =5 7 ,
Hence,
_ 1
0,P)=Pxxizt1
f(?) * =0 P—’L
SIS
7
IP*HP

where Hp denotes the harmonic mean of first P natural numbers. Since we have Hp ~ 1.69In(P)
(where [n(P) denotes natural logarithm :.e. base e of P), we have V(P) = O(Plog P). This value
of V(P) will be used to compute the isoefficiency of RP on different architectures.

Scheduler Based Load Balancing

For this scheme, it can be seen that the length of the potential work donors can never exceed the
total number of processors. At any given time, the processors that are not on the DONOR queue
are known to have no work. Hence, the total maximum work at any processor in the system can be
reduced by a factor of (1 —a) by issuing each of these processors a work request. Since a processor,
on getting work is added to the end of the queue, and since the processors already in the DONOR
queue are polled in a round robin fashion, it can be seen that no processor will be requested for

12



work twice in a time interval when another busy processor was not requested even once. Since at
any given point of time, this queue can not contain more than P processor (since duplication of a
processor is not possible) P forms an upper bound on the number of requests that need to be made
for each processor with work to be requested at least once. Thus V(P) is O(P).

5.3 Analysis of Receiver Initiated Load Balancing Algorithms for Hypercube

Here we present analyses for all the schemes introduced in section 4 with the exception of NN.
Scalability analysis for NN was presented in [23]. Some of the techniques analyzed here have better
scalability than the NN, and have near optimal isoefficiency functions.

In this section, we assume that work can be transferred through fixed size messages. The effect
of relaxing this assumption is presented in Section 7.

For a hypercube, the average distance between any randomly chosen pair of processors is
O(log P). On actual machines however, this asymptotic relation might not accurately describe
communication characteristics for the practical range of processors, and a more precise analysis
may be required. Section 5.3.6 presents such an analysis and investigates the impact of actual

2TM

communication parameters for the Ncube/ on the overall scalability of these schemes.

In this section, we perform analysis with the asymptotic value of U = O(log P).
Equation 1 thus reduces to

W =O(V(P)log Plog W)
Substituting W into the the right hand side of the same equation, we get
W = O(V(P)log Plog(V(P)log Plog W))

W =0O(V(P)log Plog(V(P)) + V(P)log Ploglog P+ V(P)log Ploglog W)

Ignoring the double log terms, we get,
W =0V (P)log Plog(V(P))) (2)

5.3.1 Asynchronous Round Robin

This is a completely distributed algorithm, there is no contention for shared resources and the
isoefficiency is determined only by the communication overhead. As discussed in section 5.2, V/(P)
in the worst case is O(P?). Substituting this into Equation 2, this scheme has an isoefficiency
function of O(P?log? P).

5.3.2 Global Round Robin

From Section 5.2, V/(P) = O(P) for this scheme. Substituting into Equation 2, this scheme has an
isoefficiency function of O(P log* P) because of communication overheads.

In this scheme, a global variable is accessed repeatedly. This can cause contention. Since the
number of times this variable is accessed is equal to the total number of work requests, it is given
by O(V(P)logW) (read and increment operations) over the entire execution. If processors are

efficiently utilized, then the total time of execution is O(W/P). Assume that while solving some
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specific problem instance of size W on P processors, there is no contention. Clearly, in this case,
W/P is much more than the total time over which the shared variable is accessed (which is given
by O(V(P)logW)). Now, as we increase the number of processors, the total time of execution (
i.e. W/P ) decreases but the number of times the shared variable is accessed increases. There is
thus a crossover point beyond which the shared variable access will become a bottleneck and the
overall runtime cannot be reduced further. This bottleneck can be eliminated by increasing W at
a rate such that the ratio between W/P and O(V(P)log W) remains the same.
This gives the following isoefficiency term,

% ~ V(P)log W

or

% ~ PlogW

or

W ~ O(P?log P)

Thus since the isoefficiency due to contention asymptotically dominates the isoefficiency due to

communication overhead, the overall isoefficiency is given by O(P?*log P).

5.3.3 GRR with Message Combining

For this scheme, it was shown in Section 5.2 that each increment on TARGET takes ©(6log P)
communication time and so, communication time for each request is ©(élog P). Also, V(P) =
O(P), hence from Equation 2, this strategy has an isoefficiency of O(é§Plog? P). Increasing 6
results in better message combining, but leads to larger overall latency and higher overhead in
processing requests in the spanning tree. Smaller values of § result in lower degree of message
combining; consequently contention for access to TARGET will begin to dominate and in the
limiting case, its isoefficiency will be the same as that for GRR. The value of § thus has to be
chosen to balance all these factors.

5.3.4 Random Polling

In Section 5.2, we had shown that for the case where an idle processor requests a random processor
for work, V(P) = ©(Plog P). Substituting values of Uy, and V(P) into Equation 1, this scheme
has an isoefficiency function of O(Plog® P).

5.3.5 Scheduler Based Load Balancing

From Section 5.2, V(P) for this scheme is O(P). Plugging this value into Equation 2, we can see
that isoefficiency due to communication overhead is O(Plog* P). Also, it can be shown from an
analysis similar to that for GRR that the isoefficiency due to contention is given by O(PZ%log P).
The overall isoefficiency of the scheme is thus given by O(P?log P).
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5.3.6 Effect of Specific Machine Characteristics on Isoefficiency.

Asymptotic communication costs can differ from actual communication costs in available range of
processors. In such cases, it is necessary to consider a more precise expression for the communication
cost.

We illustrate this for a 1024 node Neube/27M | which we also use in our experimental validation.
The Ncube/27™ is a hypercube multicomputer having the cut-through message routing feature. For
such a machine, the time taken to communicate a message of size m words over the communication
network between a pair of processors which are d hops apart is given by t5; +m X ¢, + d X t;. Here
ts, t, and tp represent the message startup time, per-word transfer time, and the per-hop time
respectively. For the simplified case, since we assume fixed size messages, the communication time
can be written as k 4+ d X tj, where k is a constant. For the hypercube architecture, the maximum
distance between any pair of processors is log P. Hence, a more precise expression for U.ppm 18
given by k 4 1 X log P.

For the 1024 processor Neube/2TM ¢, t,, and ¢}, are approximately 100 pus,2 us per 4 byte word
and 2 ps respectively. In the experiments reported in Section 8, the size of a message carrying work
is approximately 500 bytes (this figure is actually a function of the amount of work transferred).
Thus, ts + m x t,, ~ 350us and for communication between farthest pair of nodes, d = log P = 10
(for P = 1024) and d X ¢, ~ 20us. Clearly t; + m X t,, dominates d X ¢;, even for communication
between farthest processors. Consequently, the message transfer time is approximately given by
ts + m X t,, which is a constant if we assume a constant message size m.

Hence for practical configurations of Ncube/2T™ | U, is ©(1) instead of ©(log P) for ARR,
GRR, RP and SB. Since for both RP and ARR, the dominant isoefliciency term is due to commu-
nication overheads, reducing U.ymm to ©(1) has the effect of decreasing the isoefficiencies of both
these schemes by a log factor. For such machines, the isoefficiencies of RP and ARR are thus given
by O(Plog* P) and O(P?log P), respectively. However, since the dominant isoefficiency term in
both GRR and SB is due to contention, which is not affected by this machine characteristic, the
isoefficiency of both of these schemes remains O(P?log P). Ue.omym is still ©(log P) for GRR-M. The
reason is that in the absence of message combining hardware, we have to stop the request for read-
ing the value of TARGET at each intermediate step and allow for latency for message combining.
Consequently, the overall isoefficiency of this scheme remains unchanged at O( Plog? P).

We can thus see that machine specific characteristics even for a given architecture have a

significant effect on overall scalability of different schemes.

5.4 Analysis of Receiver Initiated Load Balancing Algorithms for a network of
workstations

In this section, we analyze the scalability of these schemes on a network of workstations. The
network of workstations under consideration for analysis are assumed to be connected on a standard
Carrier Sense Multiple Access (CSMA) Ethernet. Here, the time to deliver a message of fixed size
between any pair of processors is the same. The total bandwidth of the Ethernet is limited and so
this imposes an upper limit on the number of messages that can be handled in a given period of
time. As the number of processors increases, the total traffic on the network also increases causing
contention over the Ethernet.
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For this architecture, U.omm is given by ©(1). Substituting into Equation 1 , we get,
W~ O(V(P)logW)

Simplifying this as in Section 5.3, we get
W ~ O(V(P)log(V(P))) (3)

5.4.1 Asynchronous Round Robin

From Section 5.2, V(P) is O(P?). Substituting into Equation 3, this scheme has an isoefficiency of
O(P*log P) due to communication overheads.

For isoefficiency term due to bus contention, we use an analysis similar to one used for analyzing
contention in GRR for the hypercube. The total number of messages on the network over the entire
execution is given by O(V(P)log W). If processors are efficiently utilized, the total time of execution
is ©(W/P). By an argument similar to one used for contention analysis for GRR on a hypercube,
W must grow at least at a rate such that the ratio of these two terms (i.e. O(V(P)logW) and
O(W/P)) remains the same.

Thus for isoefficiency, we have,

~ V(P)log W

| =

or

w
? ~ P2 10g %
Solving this equation for isoefliciency, we get
W ~ O(P?log P)

Since this is the dominant of the two terms, it also defines the isoefficiency function for this

scheme.

5.4.2 Global Round Robin

For this case, from Section 5.2, V(P) is O(P). Substituting into Equation 3, this scheme has an
isoefficiency of O( P log P) due to communication overheads. We now consider the isoefficiency due
to contention at processor 0. We had seen that processor 0 has to handle V(P)log W requests in
O(W/P) time. Equating the amount of work with the number of messages, we get an isoefficiency
term of W ~ O(P?log P). By a similar analysis, it can be shown that the isoefficiency due to bus
contention is also given by W ~ O(P?log P). Thus the overall isoefficiency of this scheme is given
by O(P?log P).

5.4.3 Random Polling

Here, from Section 5.2, V(P) = O(Plog P). Substituting this value into Equation 3, this scheme
has an isoefficiency of O(Plog? P) due to communication overheads.

16



For isoefficiency term due to bus contention, as before, we equate the total number of messages
that have to be sent on the bus against the time. We had seen that the total number of messages is
given by O(V(P)log W) and the time (assuming efficient usage) ©(W/P). Thus for isoefficiency,

% ~ V(P)log W

or

% ~ Plog Plog W

Solving this equation for isoefliciency, we get
W ~ O(P*log? P)

Thus, since the isoefficiency due to bus contention asymptotically dominates the isoefficiency
due to communication overhead, the overall isoefficiency is given by O(P?log? P).

Effect of number of messages on Uy -

The readers may contend that the assumption of U,y being a constant is valid only when there are
few messages in the system and network traffic is limited. In general, the time for communication
of a message would depend on the amount of traffic in the network. It is true that as the number
of messages generated over a network in a fixed period of time increases, the throughput decreases
(and consequently U.omm increases). However, in the analysis, we keep the number of messages
generated in the system in unit time to be a constant. We derive isoefficiency due to contention
on the network by equating W/P (which is the effective time of computation) with the total
number of messages (V(P)logW). By doing this, we essentially force the number of messages
generated per unit time to be a constant. In such a case, the message transfer time (Ucomm ) can
indeed be assumed to be a constant. Higher efficiencies are obtained for sufficiently large problem
sizes. For such problems, the number of messages generated per unit time of computation is lower.
Consequently Ugopmm also decreases. In particular, for high enough efficiencies, U.ymmy will be close
to the optimal limit imposed by the network bandwidth.

Table 1 shows the isoefficiency functions for different receiver initiated schemes for various
architectures. The results in boldface were derived in [23]. Others were either derived in Section
5, Appendix A, or can be derived by a similar analysis. Table 2 presents a summary of the various
overheads for load balancing over a network of workstations and their corresponding isoefficiency
terms.

6 Sender Initiated Load Balancing Algorithms

In this section, we discuss load balancing schemes in which work splitting is sender initiated. In
these schemes, the generation of subtasks is independent of the work requests from idle processors.
These subtasks are delivered to processors needing them, either on demand (i.e., when they are
idle) [10] or without demand [33, 36, 35].
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Scheme— ARR NN GRR GRR-M RP Lower Bound
Arch|
SM O(P2logP) | O(P2logP) | O(P2logP) | O(PlogP) | O(Plog® P) o(P)
1+%
Cube O(P2log? P) | Q(P'*272 ) | O(P2log P) | O(Plog® P) | O(Plog® P) O(Plog P)
Ring O(P3log P) okt O(P?log P) O(P*log? P) O(P?)
Mesh O(P**®log P) Q(KVT) O(P?log P) | O(P*®log P) | O(P'®log® P) O(P'*)
WS O(P?log P) O(P?log P) O(P?log P) O(P?log® P) o(P?)

Table 1: Scalability results of receiver initiated load balancing schemes for shared memory (SM),
cube, ring, mesh and a network of workstations (WS).

Arch. | Overheads— | Communication | Contention (shared data) | Contention (bus) | Isoefficiency
Scheme]

ARR O(FP?) O(P’log P) | O(Plog P)

ws GRR o(P) O(Plog P) O(P°log P) | O(P’log P)

RP O(Plog® P) O(P?log® P) O(P?log® P)

ARR O(P log” P) O(P°log” P)

H-cube GRR O(Plog® P) O(P?log P) O(P?log P)

RP O(Plog® P) O(Plog® P)

Table 2: Various overheads for load balancing over a network of workstations (WS) and hypercubes
(H-cube) and their corresponding isoefficiency terms.
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6.1 Single Level Load Balancing (SL)

This scheme balances the load among processors by dividing the task into a large number of
subtasks such that each processor is responsible for processing more than one subtask. In doing so
it statistically assures that the total amount of work at each processor is roughly the same. The task
of subtask generation is handled by a designated processor called MANAGER. The MANAGER
generates a specific number of subtasks and gives them one by one to the requesting processors
on demand. Since the MANAGER has to generate subtasks fast enough to keep all the other
processors busy, subtask generation forms a bottleneck and consequently this scheme does not have
a good scalability.

The scalability of this scheme can be analyzed as follows. Assume that we need to generate k
subtasks, and the generation of each of these subtasks takes time v. Also, let the average subtask
size be given by z. Thus, z = W/k. Clearly k = Q(P) since the number of subtasks has to be
at least of the order of the number of processors. It can also be seen that z is given by Q(P).
This follows from the fact that in a P processor system, on the average, P work request messages
will arrive in ©(z) time. Hence, to avoid subtask generation from being a bottleneck, we have to
generate at least P subtasks in time ©(z). Since the generation of each of these takes v time, z
has to grow at a rate higher than @(vP). Now, since W = k X z, substituting lower bounds for k
and z, we get the isoefficiency function to be W = Q(P?). Furuichi et. al. [10] present a similar
analysis to predict speedup and efficiency. This analysis does not consider the idle time incurred by
processors between making a work request and receiving work. Even though this time is different
for different architectures such as the mesh, cube etc., it can be shown that the overall scalability
is still Q(P?) for these architectures.

In general, subtask sizes (z) can be of widely differing sizes. Kimura and Ichiyoshi present a
detailed analysis in [20] for the case in which subtasks can be of random sizes. They show that in
this case, the isoefficiency of SL is given by ©(P?%log P).

6.2 Multi Level Load Balancing (ML)

This scheme tries to circumvent the subtask generation bottleneck [10] of SL through multiple level
subtask generation. In this scheme, all processors are arranged in the form of an m-ary tree of
depth [. The task of super-subtask generation is given to the root processor. It divides the task
into super-subtasks and distributes them to its successor processors on demand. These processors
subdivide the super-subtasks into subtasks and distribute them to successor processors on request.
The leaf processors repeatedly request work from their parents as soon as they finish previously
received work. A leaf processor is allocated to another subtask generator when its designated
subtask generator runs out of work. For [ = 1, ML, and SL become identical.

For ML utilizing an [ level distribution scheme, it has been shown in [20] that the isoefficiency
is given by @(PHTl(log P)HTl) These isoefficiency functions were derived by assuming that the
cost of work transfers between any pair of processors is ©(1). The overall efficiency and hence the
isoefficiency of these schemes will be impacted adversely if the communication cost depends on the
distance between communicating processors. As discussed in Section 5.3.6, for the Ncube/27M,
the assumption of a constant communication cost (0(1)) is reasonable, and hence these scalability
relations hold for practical configurations of this machine.
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For a two level scheme, the isoefficiency is therefore @(P%(log P)%) and for a three level distri-
bution scheme, it is given by @(P%(log P)?). Scalability analysis of these schemes indicates that
isoefliciency of these schemes can be improved to a certain extent by going to higher numbers of
levels but the improvement is marginal and takes effect only at very large number of processors.
For instance, P%(log P)? > P%(log P)% only for P > 1024.

6.3 Randomized Allocation

A number of techniques using randomized allocation have been presented in the context of parallel
depth first search of state space trees [33, 36, 35]. In depth first search of trees, the expansion of a
node corresponds to performing a certain amount of useful computation and generation of successor
nodes, which can be treated as subtasks.

In the Randomized Allocation Strategy proposed by Shu and Kale [36], every time a node is
expanded, all of the newly generated successor nodes are assigned to randomly chosen processors.
The random allocation of subtasks ensures a degree of load balance over the processors. There are
however some practical difficulties with the implementation of this scheme. Since for each node
expansion, there is a communication step, the efficiency is limited by the ratio of time for a single
node expansion to the time for a single node expansion and communication to a randomly chosen
processor. Hence applicability of this scheme is limited to problems for which the total computation
associated with each node is much larger than the communication cost associated with transferring
it. This scheme also requires a linear increase in the cross section communication bandwidth with
respect to P; hence it is not practical for large number of processors on any practical architecture
(eg. cube, mesh, networks of workstations). For practical problems, in depth first search, it is much
cheaper to incrementally build the state associated with each node rather than copy and/or create
the new node from scratch [39, 4]. This also introduces additional inefficiency. Further, the memory
requirement at a processor is potentially unbounded, as a processor may be required to store an
arbitrarily large number of work pieces during execution. In contrast, for all other load balancing
schemes discussed up to this point, the memory requirement of parallel depth first search remains
similar to that of serial depth first search.

Ranade [33] presents a variant of the above scheme for execution on butterfly networks or hy-
percubes. This scheme uses a dynamic algorithm to embed nodes of a binary search tree into a
butterfly network. The algorithm works by partitioning the work at each level into two parts and
sending them over to the two sons (processors) in the network. Any patterns in work splitting
and distributions are randomized by introducing dummy successor nodes. This serves to ensure a
degree of load balance between processors. The author shows that the time taken for parallel tree
search of a tree with M nodes on P processors is given by O(M/P + log P) with a high degree
of probability. This corresponds to an optimal isoefficiency of O(Plog P) for a hypercube. This
scheme has a number of advantages over Shu’s scheme for hypercube architectures. By localizing
all communications, the communication overhead is reduced by a log factor here. (Note that com-
municating a fixed length message between a randomly chosen pair of processors in a hypercube
takes O(log P) time.) Hence, Ranade’s scheme is physically realizable on arbitrarily large hyper-
cube architectures. To maintain the depth-first nature of search, nodes are assigned priorities and
are maintained in local heaps at each processor. This adds an additional overhead of managing
heaps, but may help in reducing the overall memory requirement. Apart from these, all the other
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restrictions on applicability of this scheme are the same as those for Shu and Kale’s [36] scheme.

The problem of performing a communication for each node expansion can be alleviated by
enforcing a granularity control over the partitioning and transferring process [29, 36]. It is , however,
not clear whether mechanisms for effective granularity control can be derived for highly irregular
state space trees. One possible method [29] of granularity control works by not giving away nodes
below a certain “cutoff” depth. Search below this depth is done sequentially. This clearly reduces
the number of communications. The major problem with this mechanism of granularity control is
that subtrees below the cutoff depth can be of widely differing sizes. If the cutoff depth is too deep,
then it may not result in larger average grain size and if it is too shallow, subtrees to be searched
sequentially may be too large and of widely differing sizes.

7 Effect of Variable Work Transfer Cost on Scalability

In the analysis presented in previous sections, we have assumed that the cost of transferring work
is independent of the amount of work transferred. However, there are problems for which the
work transfer cost is a function of the amount of work transferred. Instances of such problems are
found in tree search applications for domains where strong heuristics are available [38]. For such
applications, the search space is polynomial in nature and the size of the stack used to transfer work
varies significantly with the amount of work transferred. In this section, we demonstrate the effect
of variable work transfer costs for the case where the cost of transferring w units of work varies
as y/w for the GRR load balancing scheme. We present analysis for the hypercube and network
of workstations. Analysis for other architectures and load balancing schemes can be carried out
similarly.

We perform the analysis in the same framework as presented in Section 5. The upper bound
on the total number of work requests is computed. Since the total number of actual work transfers
can only be less than the total number of requests, the upper bound also applies to the number of
work transfers. Considered in conjunction with the communication cost associated with each work
piece, this specifies an upper bound on the total communication overhead. Note that by using the
upper bound on the number of requests to specify an upper bound on the number of work transfers,
we are actually setting a loose upper bound on the total communication overhead. This is because
of the fact that the total number of work transfers may actually be much less than the number of
requests.

7.1 Hypercube Architecture

From our analysis in Section 5.1, we know that after the i** round of V(P) requests, the maximum
work available at any processor is less than (1 — a)iW. Hence, if the size of a work message varied
as \/w where w was the amount of work transferred, then w = O((1 — a)'W) and Uy at the

it" step is given by O(log Py/w), i.e. O(log P\/(1 — a)iW). Since O(logW) such iterations are

required, the total communication cost is given by:

T, = 38V Usopim * V(P)

T, = 8" /(1= a)W xlog P x P

21



T, = (Plog P)Ni8" /(1 — a)' W
T, = (Plog PIVWEZEW /(1 - )

Let /(1 — a) = a. Clearly a < 1.

We have,
T, = (Plog P)WWYiEW o/
_ JogW+1
T, = (Plog P)VW = 1“
—a
Since a8+ approaches 0 for large W, “_“io_g:“rl approaches a constant value.
Thus,

T, = O((Plog P)WW)

So, the isoefficiency due to communication is given by equating the total communication over-
head with the total amount or work. Thus,

W = O(Plog PVW)

or

W = O(P*log® P)

The isoefficiency term due to contention is still the same, i.e. O(P?log P), and so the overall
isoefficiency of the scheme in this case is now given by W ~ O(P%log? P). We can see that in
this case, the overall isoefficiency function has increased due to the dependence of cost of work
transferred on the amount of work transferred thus resulting in poorer scalabilities.

7.2 Network of Workstations

For a network of workstations, we know that the message transfer time for a fixed length message
is ©(1). Thus for communicating a message of size O(y/w), communication cost Ueopmm = O(V/w).

As before,
T, = S8V Uy + V(P)
Substituting U.omm and V(P), we get,
T, ~ 28"\ /w P
T, ~ PYEY (1 = )iw

T, ~ PYWEEY /(1 - a)i

The summation term has been shown to approach a constant value as W increases. Therefore,

T, = O(PVW)

Equating T, with W for isoefliciency, we get
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W = O(PVW)

or

W = 0(P?)

Thus isoefficiency due to communication overheads is given by W ~ O(P?). The term corre-
sponding to accessing the shared variable TARGET remains unchanged, and is given by O(P?log P).
For isoefficiency due to contention on shared bus, we have to balance the time for computation with
the total time required to process the required number of messages on the Ethernet. Since all mes-
sages have to be sent sequentially, the total time for processing all messages is of the same order
as the total communication overhead. Thus, we have, W/P ~ O(PVW) or W ~ O(P*). We
can see that this term clearly dominates the communication overhead term, therefore, the overall
isoefficiency for this case is given by W ~ O(P*). This should be compared with the isoefficiency
value of O(P?log P), which we had obtained under the fixed message size assumption.

From the above sample cases, it is evident that the cost of work transfer has a significant
bearing on the overall scalability of a given scheme on a given architecture. Thus, it becomes very
important to analyze the application area to determine what assumptions can be made on the size
of the work transfer message.

8 Experimental Results and Discussion

Here we report on the experimental evaluation of the eight schemes. All the experiments were done
on a second generation Neube?™ in the context of the Satisfiability problem [5]. The Satisfiability
problem consists of testing the validity of boolean formulae. Such problems arise in areas such as
VLSI design and theorem proving among others [2, 5]. The problem is “given a boolean formula
containing binary variables in disjunctive normal form, find out if it is unsatisfiable”. The Davis
and Putnam algorithm [5] presents a fast and efficient way of solving this problem. The algorithm
essentially works by performing a depth first search of the binary tree formed by true/false assign-
ments to the literals. Thus the maximum depth of the tree cannot exceed the number of literals.
The algorithm works as follows: select a literal, assign it a value true, remove all clauses where this
literal appears in the non-negated form, remove the literal from all clauses where this appears in
the negated form. This defines a single forward step. Using this step, search through all literals
by assigning values true (as described) and false (invert the roles of the negated and non-negated
forms) until such time as either the clause set becomes satisfiable or we have explored all possible
assignments. Even if a formula is unsatisfiable, only a small subset of the 2 combinations possible
will actually be explored. For instance, for a 65 variable problem, the total number of combinations
possible is 26° ( approximately 3.69 x 10'?) but only about 107 nodes are actually expanded in a
typical problem instance. The search tree for this problem is highly pruned in a nonuniform fashion
and any attempt to simply partition the tree statically results in extremely poor load balance.
We implemented the Davis-Putnam algorithm, and incorporated the load balancing algorithms
discussed in Sections 4, and 6.1 and 6.2 into it. This program was run on several unsatisfiable
instances. By choosing unsatisfiable instances, we ensured that the number of nodes expanded by
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the parallel formulation was exactly the same as that by the sequential one, and any speedup loss
was only due to the overheads of load balancing.

In the various problem instances that the program was tested on, the total number of nodes
in the tree varied between approximately 100 thousand and 10 million. The depth of the tree
generated (which is equal to the number of variables in the formula) varied between 35 and 65
variables. The speedups were calculated with respect to the optimum sequential execution time
for the same problems. Average speedups were calculated by taking the ratio of the cumulative
time to solve all the problems in parallel using a given number of processors to the corresponding
cumulative sequential time. On a given number of processors, the speedup and efficiency were
largely determined by the tree size (which is roughly proportional to the sequential runtime).
Thus, speedup on similar sized problems were quite similar.

All schemes were tested over a sample set of 5 problem instances in the specified size range.
Tables 3 and 5 show average speedup obtained in parallel algorithm for solving the instances of the
satisfiability problem using eight different load balancing techniques. Figures 8 and 8 present graphs
corresponding to the speedups obtained. Graphs corresponding to NN and SB schemes have not
been drawn. This is because they are nearly identical to RP and GRR schemes respectively. Table
4 presents the total number of work requests made in the case of random polling and message
combining for a specific problem. Figure 8 presents the corresponding graph and compares the
number of messages generated with O(Plog* P) and O(Plog P) for random polling and message
combining respectively.

Our analysis had shown that GRR-M has the best isoefliciency for the hypercube architecture.
However, the reader would note that even though the message combining scheme results in the
smallest number of requests, the speedup obtained is similar to that for RP. This is because software
message combining on Ncube/2TM is quite expensive, and, this difference between the number of
work requests made in load balancing schemes is not high enough. It is clear from the analysis
in Section 5 and the trend in our experimental results, that this difference will widen for more
processors. Hence for larger number of processors, message combining scheme would eventually
outperform the other schemes. In the presence of message combining hardware, the log factor
reduction in the number of messages causes a significant reduction in overheads and consequently
this scheme can be expected to perform better than the others even for a moderate number of
processors.

Experimental results show that NN performs slightly better than RP. Recall that the isoef-
ficiency of NN is ©(P"), where r is determined by the quality of the splitting function (better
splitting functions result in smaller values of 7). In the context of the 15 puzzle, in [29], r was
determined to be 1.57. For up to 1024 processors, NN and RP have very similar performance.
However, for higher values of P, Plog? P would become smaller than P” and RP would outperform
NN. The exact crossover point is determined by the value of r, which depends on the quality of
the splitting function. Appendix B analyzes the effect of the quality of the splitting function on
overall scalability of NN and RP. It is shown that the scalability of the NN scheme degrades much
faster than RP as the quality of the splitting function deteriorates. Thus for domains where good
splitting functions are not available, RP would be uniformly better than NN.

To clearly demonstrate the effect of quality of splitting function on the scalability of RP and
NN, we test the effect of damaging the splitting function on both of these schemes. Figure 8
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shows the experimental results comparing the speedup curves for RP and NN schemes with a
damaged splitting function. It can be seen here that though with the original splitting function,
NN marginally outperformed RP, it performs significantly worse for poorer splitting functions. This
is in perfect conformity with expected theoretical results.

From our experiments, we observe that the performance of GRR and SB load balancing schemes
is very similar. As shown analytically, both of these schemes have identical isoefficiency functions.
Since the isoefficiency of these schemes is O(P?log P), performance of these schemes deteriorates
very rapidly after 256 processors. Good speedups can be obtained for P > 256, only for very large
problem instances. Neither of these schemes is thus useful for larger systems. Our experimental
results also show ARR (Asynchronous Round Robin) to be more scalable than these two schemes,
but significantly less scalable than RP, NN or GRR-M. The readers should note that although the
isoefficiency of ARR is O(P?log? P) and that of GRR is O(P?log P), ARR performs better than
GRR. The reason for this is that P%log? P is only an upper bound which is derived using V(P) =
O(P?). This value of V(P) is only a loose upper bound for ARR. In contrast, the value of V(P)
used for GRR (O(P)) is a tight bound.

For the case of sender initiated load balancing, (SL and ML) the cutoff depths have been fine-
tuned for optimum performance. ML is implemented for [ = 2, as for less than 1024 processors
[ = 3 does not provide any improvements. It is clear from the speedup results presented in Table
5 that the single level load balancing scheme has a very poor scalability. Though this scheme
outperforms the multilevel load balancing scheme for small number of processors, the subtask
generation bottleneck sets in for larger number of processors and performance degradation of single
level scheme is rapid after this point. The exact crossover point is determined by the problem size,
values of parameters chosen and architecture dependent constants. Comparing the isoefliciency
function for a two level load distribution, (given by @(P%(log P)%)) with corresponding functions
for RP and GRR-M which are given by O(Plog® P) and O(Plog? P), we see that, asymptotically,
RP and GRR-M should both perform better than two level sender based distribution scheme. Our
experimental results are thus in perfect conformity with expected analytical results.

To demonstrate the accuracy of the isoefficiency functions in Table 1, we experimentally verify
the isoefficiency of the RP technique (the selection of this technique was arbitrary). As a part of
this experiment, we ran 30 different problem instances varying in size from 100 thousand nodes
to 10 million nodes on a range of processors. Speedups and efficiencies were computed for each
of these. Data points with same efficiency for different problem sizes and number of processors
were then grouped together. Where identical efficiency points were not available, the problem
size was computed by averaging over points with efficiencies in the neighborhood of the required
value. This data is presented in Figure 8, which plots the problem size W against Plog? P for
values of efficiency equal to 0.9, 0.85, 0.74 and 0.64. Also note the two data points for which exact
values of problem sizes are not available for corresponding efficiencies. Instead we have plotted a
neighboring point. We expect the points corresponding to the exact efficiency to be collinear with
the others. We had seen in Section 5 that the isoefficiency of the RP scheme was O(Plog” P).
We had further seen in Section 5.3.6 that due to large message startup time for the Ncube/27M,
effective isoefficiency of RP is O(Plog? P) when P is not very large. Thus, analytically, the points
corresponding to the same efficiency on the said graph must be collinear. We can see from Figure
8 that the points are indeed collinear, which clearly shows that the isoefficiency of the RP scheme
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Scheme— | ARR | GRR-M RP NN GRR SB
Pl
8 7.506 7.170 7.524 7.493 7.384 7.278
16 14.936 14.356 15.000 | 14.945 | 14.734 | 14.518%
32 29.664 | 28.283 | 29.814 | 29.680 | 29.291 | 28.875
64 57.721 | 56.310 | 58.857 | 58.535 | 57.729 | 57.025
128 103.738 | 107.814 | 114.645 | 114.571 | 110.754 | 109.673
256 178.92 | 197.011 | 218.255 | 217.127 | 184.828 | 184.969
512 259.372 | 361.130 | 397.585 | 397.633 | 155.051 | 162.798
1024 284.425 | 644.383 | 660.582 | 671.202

Table 3: Average Speedups for Receiver Initiated Load Balancing strategies.

Scheme— | GRR-M RP

P|

8 260 562
16 661 2013
32 1572 5106
64 3445 15060
128 8557 46056
256 17088 | 136457
512 41382 | 382695
1024 72874 | 885872

Table 4: Number of requests generated for GRR-M and RP.

is indeed what was theoretically derived. This demonstrates that it is indeed possible to accurately
estimate the isoefficiency of a parallel algorithm and establishes its viability as a useful tool in

evaluating parallel system.

9 Summary of Results and Future Work

The scalability analysis of various load balancing schemes has provided valuable insights into the
relative performance and suitability of these schemes for different architectures.

For the hypercube, our analysis shows that GRR-M, RP and NN schemes are more scalable
than ARR, GRR and SB; hence, they are expected to perform better for higher number of pro-
cessors. Asymptoticallyy, GRR-M has the best isoefliciency of the three; but in the absence of
message combining hardware, the high constant of proportionality can cause GRR-M to perform
poorer than RP and NN for moderate number of processors. In our experiments, GRR-M performs
similar to RR and NN for up to 1024 processors on the Ncube/27M which does not have message
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Scheme— RP SL ML
P|
8 7.524 7.510 7.315
16 15.000 | 14.940 | 14.406
32 29.814 | 29.581 | 28.246
64 58.857 | 52.239 | 56.003
128 114.645 | 79.101 | 106.881
256 218.255 192.102
512 397.585 357.515
1024 660.582 628.801

Table 5: Speedups for Sender Initiated Load Balancing strategies in comparison to RP.
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Figure 3: Average Speedups for Receiver Initiated Load Balancing Strategies.
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Figure 5: Average Speedups for SL and ML strategies compared to RP.
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combining hardware. However, from the number of communication messages, it can be inferred
that, asymptotically, as P grows, GRR-M can eventually be expected to outperform RP and NN
even on the Ncube/27™ . Between RP and NN, RP has an asymptotically better scalability. Thus,
with increasing number of processors, RP is expected to outperform NN. RP is also relatively
insensitive to degradation of work splitting functions compared to NN. In our experiments, NN
has been observed to perform slightly better than RP. This is attributed to the high quality of
the splitting function and the moderate number of processors. Qur experiments show that with a
poorer splitting function, NN performs consistently poorer than RP even for very small number of
processors.

Scalability analysis indicates that SB has a performance similar to that of GRR even though SB
generates fewer work requests by not requesting any processors that are known to be idle. The poor
scalability of both of these schemes indicates that neither of these are effective for larger number
of processors. These conclusions have been experimentally validated.

The sender based scheme, ML, has been shown to have reasonable scalability, and has only a
slightly worse performance compared to RP in our experiments. A major drawback of this scheme is
that it requires the fine tuning of a number of parameters to obtain best possible performance. The
random allocation scheme for the hypercube presented in [33] has an isoefficiency of O(Plog P),
which is optimal. However, for many problems, the maximum obtainable efficiency of this scheme
has an upper bound much less than 1. This bound can be improved, and made closer to 1 by using
effective methods for granularity control; but it is not clear if such mechanisms can be derived for
practical applications. Also the memory requirements of these schemes are not well understood.
In contrast, the best known receiver initiated scheme for the hypercube has an isoefficiency of
O(Plog? P), and its per-processor memory requirement is the same as that for corresponding serial
implementations.

All the sender initiated schemes analyzed here use a different work transfer mechanism compared
to the receiver initiated schemes. For instance, in the context of tree search, sender based schemes
give the current state itself as a piece of work, whereas stack splitting and transfer is the common
work transfer mechanism for receiver initiated schemes. The sender-based transfer mechanism
is more efficient for problems for which the state description itself is very small but the stacks
may grow very deep and stack splitting may become expensive. In addition, if the machine has
a low message startup time (startup time component of the message passing time between two
processors), the time required to communicate a stack may become a sensitive function of the stack
size, which in turn may become large. In such domains, sender based schemes may potentially
perform better than receiver based schemes.

A network of workstations provides us with a cheap and universally available platform for
parallelizing applications. Several applications have been parallelized to run on a small number
of workstations [1, 26]. For example, in [1] an implementation of parallel depth first branch and
bound for VLSI floorplan optimization is presented. Linear speedups were obtained on up to 16
processors. The essential part of this branch-and-bound algorithm is a scalable load balancing
technique. Our scalability analysis can be used to investigate the viability of using a much larger
number of workstations for solving this problem. Recall that GRR has an overall isoefficiency of
O(P?log P) for this platform. Hence, if we had 1024 workstations on the network, we can obtain
the same efficiency on a problem instance which is 10240 times bigger compared to a problem
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10242 1log 1024
162log 16 )
indicates that it is indeed possible to obtain good efficiencies with large number of workstations.

instance being run on 16 processors (10240 = This result is of significance, as it
Scalability analysis also sheds light on the degree of scalability of such a system with respect to
other parallel architectures such as hypercube and mesh multicomputers. For instance, the best
applicable technique implemented on a hypercube has an isoefficiency function of O( Plog® P). With

this isoefliciency, we would be able to get identical efficiencies as those obtained on 16 processors

10241log” 1024
16log? 16

to obtain good efficiencies even with smaller problems on the hypercube. We can thus conclude

by increasing the problem size 400 fold (which is ). We can thus see that it is possible
from isoefficiency functions that the hypercube offers a much more scalable platform compared to
the network of workstations for this problem.

For the mesh architecture, we have analytically shown GRR-M and RP to have the best scal-
ability. These are given by O(P!?log P) and O(P'°log? P) respectively. These figures indicate
that these schemes are less scalable than their corresponding formulations for hypercube connected
networks. However, it must be noted that GRR-M is within a log factor of the lower bound on
isoefficiency for mesh architectures, given by P'®. Thus this scheme is near optimal for mesh
architecture.

Speedup figures of individual load balancing schemes can change with technology dependent
factors such as the CPU speed, the speed of communication channels etc. These performance
changes can be easily predicted using isoefficiency analysis. For instance, if each of the CPUs of a
parallel processor were made faster by a factor of 10, then Uy /Ucqic would increase by a factor
of 10. From our analysis in Section 5.1, we can see that we would have to increase the size of our
problem instance by a factor of 10 to be able to obtain the same efficiency. On the other hand,
increasing communication speed by a factor of 10 would enable us to obtain the same efficiency
on problem instances a tenth the size of the original problem size. This shows that the impact
of changes in technology dependent factors is moderate. These can, however, be quite drastic for
other algorithms such as FF'T [13] and Matrix algorithms [12]. Being able to make such predictions
is one of the significant advantages of isoefliciency analysis.

Two problem characteristics, communication coupling between subtasks and the ability to es-
timate work size, define a spectrum of application areas. Different load balancing strategies are
needed for different points in this spectrum. In this paper, we have analyzed the point where there
is no communication coupling and its not possible to estimate work size. It would be interesting to
investigate optimal load balancing schemes for other points in this spectrum. For instance, there is
another class of problems where the amount of work associated with a subtask can be determined
but there is a very definite pattern of communication between subtasks. Examples can be found in
scientific computations involving the solution of partial differential equations.

Dynamic load Balancing algorithms for SIMD processors are of a very different nature compared
to those for MIMD architectures [9, 27, 32, 18]. Due to architectural constraints in SIMD machines,
load balancing needs to be done on a global scale. In contrast, on MIMD machines, load can be
balanced among a small subset of processors while the others are busy doing work. Further, in
massively parallel SIMD machines, computations are of a fine granularity, hence communication to
computation tradeoffs are very different compared to MIMD machines. Hence, the load balancing
schemes developed for MIMD architectures may not perform well on SIMD architectures. Analysis
similar to that used in this paper has been used to understand the scalability of different load
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balancing schemes for SIMD architectures and to determine best schemes [18].

Appendix A

Analysis of Load Balancing Algorithms for Mesh Architectures

Here we analyze the isoefficiency function for the above schemes on the mesh architecture.

Asynchronous Round Robin

As before, for this case, V(P) = O(P2). Ucomm for this architecture is @(\/f) Substituting these values of Ucomm
and V(P) into Equation 1, the isoefficiency for this scheme is given by O(P?® log P).

Global Round Robin

For isoefficiency due to communication overhead, V(P) = O(P) and Ucomm = @(\/]_3) Substituting these values into
Equation 1, the isoefficiency due to communication overheads is O(P1'5 log P).

For isoefficiency due to contention, as discussed before, we need to equate the work at each processor (assuming
efficient distribution) with number of messages that need to be processed by processor 0 during this time. Thus for
isoefficiency,

% ~V(P)logW
or

% ~ PlogW
Solving this equation for isoefficiency, we get

W = O(P’log P)

Thus since the isoefficiency due to contention asymptotically dominates the isoefficiency due to communication
overhead, the overall isoefficiency is given by O(P2 log P).

GRR-M

From Section 5.2, we have V(P) = O(P). Also, message combining can be performed by propagating a work request
left up to column 0 of the mesh and then propagating it up to processor 0. In this way, each increment on the variable
TARGET takes @(5\/?), where 6 is the time allowed for message combining at each intermediate processor. Thus,
Ucomnm = @(5\/?).Substituting these values into Equation 1, the isoefficiency due to communication overheads is
O(P'?log P). Since we have no contention this term defines the overall isoefficiency of this scheme.

Random Polling on a Mesh
As before, V(P) = ©(Plog P) and Ucomm = @(\/f) Substituting these values of Ucomm and V(P) into Equation 1,

this scheme has an isoefficiency function of O(P**log? P).

Appendix B

Effect of Quality of Splitting Function on Scalability.

Our theoretical analysis shows that the isoefficiency functions for RP and NN schemes are O(Plogl; P x log3 P)

1

+ o
and Q(P'°82 72 respectively.
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For RP, thus,
W~ O(Plog_1_ P xlog; P)

log, P
~O(P—82—_P x1log? P)
10g2 1—a
Now,
1

1—«

=1l+a+a’+...

and for o << 1, ﬁ ~ 1+ «. Substituting in relation for W, we get,

log, P

W O(P—22— i log? P
( log2(1—|—a)>< 0g; P)
Also,
0/2 0/3
log_(1 =0 — — 4 —...
og(l+a)=a——+=

Again, for & << 1, we can neglect higher powers of «, and

log,(1+a)~a
Substituting in relation for W, we get,
W~ 0(l x Plog® P) (4)
a
Similarly, for the case of NN,

1
o

i+
=)
1

1+ ))

1+%

ey
NQ(Pl-Hng( n ))

W ~ Q(P'82

~ Q(Plog22><(

1+%

~Q(P><P1°g2( " ))

Thus we get
1
W~ Q(P x P82 27?2 (5)

Now consider Equations 4 and 5. On damaging the splitting function so as to reduce « by a factor of 2, isoefficiency
for RP increases by a factor of 2 whereas that for NN increases by a factor of P. This clearly demonstrates that the
scalability of NN is significantly degraded by a poor splitting function.
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