Scalability of Branch-and-Bound and Adaptive
Integration

Rodger Zanny, Karlis Kaugars and Elise de Doncker
Department of Computer Science
Western Michigan University
Kalamazoo MI 49008

Abstract We address the scalability of branch-
and-bound and adaptive integration methods in the
common framework of task refinement strategies.
Not withstanding the different nature (discrete ver-
sus continuous) of the problems solved by these al-
gorithms, we give an analogous treatment of scala-
bility issues for these irregular problems, including
notions of inherent limitations on the scalability of
problem instances, and introduce a parallel scalabil-
ity metric. Assessment and validation of the metric
is based on detailed test results.

Keywords: Branch-and-bound, adaptive integra-
tion, scalability, task refinement, parallel branch-
and-bound.

1 Introduction

We address a class of algorithms which proceed
by selecting and refining tasks. Using global
selection criteria, the value of these methods
is clear for tackling irregular problems, with
problem hot spots given considerable and au-
tomatic attention through local refinement. As
a result of inherently sequential problem be-
havior and global algorithm selection criteria,
parallel performance is often affected by poor
scalability. We explore similarities between
adaptive partitioning methods for multivariate
integration (cubature) and branch-and-bound
strategies.

1.1 Terminology

An Adaptive Cubature (AC) algorithm at-
tempts to approximate a given integral to
within a requested accuracy, by successive re-
finement of the domain of integration. The
subdivision structure of the domain allows for
a tree representation of the examined subprob-
lems. Each node in the region subdivision tree
corresponds to a region, and its children nodes
to the subregions obtained from the parent re-
gion within one subdivision step. At any stage
of the algorithm, the leaf nodes correspond to
the currently available (active) regions.

Specifically, a Global AC (GAC) method at-
tempts to achieve the requested accuracy glob-
ally, over the entire active set of regions. The
priority for subdivision is used to key a pri-
ority queue data structure. For example, the
PARINT [2] GAC selects the next region based
on its local estimated absolute integration er-
ror, and bisects the region perpendicularly to
the direction where the integrand is estimated
to vary the most. The subdivision tree is thus
a binary tree. We use a heap-based priority
queue to manage the active set.

Classically, a Local AC (LAC) method subdi-
vides a region until a local acceptance criterion
is reached (such as local estimated absolute
error not exceeding the global absolute toler-
ance times the ratio of the subregion’s volume
to that of the original domain), upon which
the subregion becomes inactive or is discarded.
This subdivision procedure corresponds to a
depth-first generation of the subdivision tree

and can be implemented using a stack.

Branch-and-bound (B&B) methods, which
are used to search the state space of an opti-
mization problem, proceed by partitioning the
solution space. The entire space is represented
at the root node of the corresponding B&B tree.
The children at each node represent the sub-
spaces obtained by branching, or subdividing
the solution space of the parent node. Each
iteration of a B&B procedure selects the next
node from which to branch based on bounds
estimated for the solution at each node. The
node’s children with their bounds are gener-
ated. Comparison of a child’s bound with the
current best solution (if one exists so far) al-
lows for the discarding of inferior nodes. Non-
discarded (live) nodes are added to the active
set.

B&B strategies include LCB&B where the
next node to branch from is selected as the
one with Least Cost [3]. Asin GAC, LCB&B re-
quires the maintainance of a priority queue. As
in LAC, the tree can be explored depth-first (us-
ing a stack), whereas breadth-first exploration
corresponds to using a FIFO queue.

1.2 Irregular Problems / Scalability

GAC is generally considered superior to LAC
methods especially for dealing with irregular
problems, such as integrand singularities or
peaks. The fact that GAC methods rely on a
form of global priority queue, as well as updat-
ing of global data, presents a disadvantage with
respect to parallelizing these algorithms, espe-
cially in a distributed environment. Maintain-
ing a global heap is unsuited in view of com-
munication expense [4]. Alternatively, multi-
ple, distributed, local heap structures, which
for irregular problems or on heterogeneous pro-
cessors will grow and shrink at different rates,
imply the need for load balancing, again incur-
ring communication costs.

In GAC and LCB&B, processors can work on
non-globally-optimal subproblems (given im-
perfect load balancing). Furthermore, there
may not be enough “important” subproblems
for all processors. As a consequence, there

may be work redundancy, defined as the ex-
tra work (e.g., extra node expansions) done by
the parallel algorithm, when compared with
the sequential algorithm. Excessive work re-
dundancy is termed work anomaly [5]. This
is especially prevalent in GAC, as nodes are
never eliminated. As a trade-off, processors are
idled in the absence of any work to perform, as
is the case in LAC and B&B strategies, where
non-promising nodes are killed. Both work re-
dundancy and idle time have an adverse and
proportional effect on speedup and parallel ef-
ficiency.

Furthermore, given a basic problem solving
method (such as GAC or B&B), the problems
of redundancy and idle time is in some cases
inherent to the specific problem being solved:
no tweaking of the algorithm can avoid the
anomalous behavior rooted in the problem in-
stance.

Subsequently in this paper we will estimate
the inherent non-scalability of certain irregular
problem classes. Section 2 introduces a scala-
bility metric which can be used for GAC and
LCB&B. Section 3 gives results for test cases
where the amount of inherent scalability in a
problem is varied, resulting in corresponding
changes both in terms of predicted behavior by
the metric, and observed behavior using a syn-
chronous global heap simulation for the active
set. Section 4 gives conclusions and addresses
future work.

2 Measures of Scalability

In [1], the number of critical nodes of a branch-
and-bound problem instance is used as the
scalability measure. A critical node is defined
as a node in the search space whose bound
function value is strictly less than the opti-
mal solution. The set of critical nodes must
be expanded by any sequential or parallel B&B
algorithm to guarantee that the optimal solu-
tion is found. The number of critical nodes de-
pends upon the problem, the problem instance,
the bound function, and the branching method
used.

If a problem has few critical nodes, there
may not be enough available at any iteration
of a parallel algorithm to keep a large number
of workers busy performing useful work. For a
given problem instance, a tight bound function
will reduce the number of critical nodes, reduc-
ing the node expansions needed to solve the
problem, but also reducing the scalability. A
loose bound function will result in more critical
nodes and better scalability, but more overall
work [1].

Correspondingly, certain nodes within a GAC
problem must be expanded to reach a solu-
tion. These regions at least include those of
which the error estimate exceeds the total re-
quested accuracy; these regions can be consid-
ered the critical regions. Without subdivid-
ing these regions, the requested accuracy can-
not be reached. As in B&B, if the number of
these critical regions is large, so is the amount
of important work available to workers at any
given iteration, and therefore the scalability
improves. The number of critical regions de-
pends upon the problem instance, the integra-
tion rule, and the subdivision strategy.

A related category of nodes is the set of pri-
mary nodes. These are the nodes that are ex-
panded in a sequential execution of the B&B
or GAC algorithm. Every critical node must
clearly also be a primary node. The number
of primary nodes is also a useful measure of
the inherent scalability of a problem, as the
sequential solving of a problem allows for all
information (which would include global infor-
mation in a parallel algorithm) to be available
throughout the computation, and in the ab-
sence of speedup anomaly will result in a so-
lution with a minimal number of node expan-
sions. We have found this to be the case in
GAC as well.

A weakness of using the number of these
types of nodes as a measure of scalability is
that it does not reflect the available work at
any particular moment during the execution of
the algorithm. A larger problem instance may
have more critical nodes than a smaller prob-
lem instance, but at any given point in time
it may not offer any additional amount of use-

ful work to the workers, as the critical nodes
are available only over the increased number of
iterations it takes to solve the larger problem.

For both B&B and GAC, we propose as a
useful measure of scalability the number of pri-
mary nodes that are on the algorithm’s priority
queue at any iteration, which we term the cur-
rent primary node count. For B&B, this mea-
sure corresponds to the active set size during
a sequential run, assuming that nodes on the
heap that are dominated by a new best solu-
tion are removed from the heap as soon as the
new solution is found

A related measure is of course the current
critical node count, the current number of crit-
ical nodes on the priority queue.

Figure 1 shows the current primary region
count, graphed across the iterations, for the
integration of the function f(z,y,z) = 1/(z +
y + z)?, over the unit cube. The “ideal” line
on the graph represents the maximum possi-
ble number of primary regions available at any
iteration. In this ideally scalable case, every re-
gion placed on the heap is assumed to be a pri-
mary region; at the half-way point through the
execution, the decreasing number of remaining
iterations then begins to reduce the number
of regions on the heap that could later be re-
moved. If we define p; to be the number of
current primary regions at iteration ¢, then a
useful measure is ¢; = Z§:1 pj, the cumula-
tive total of the primary node counts. Figure 2
plots the actual and maximum, or ideal, ¢; val-
ues for the data from Figure 1.

3 Experimental Results

3.1 Adaptive Integration

To test the proposed scalability metric for
adaptive integration we consider a problem
which allows for varying the actual degree of
scalability. The integrand function is of the
form

Current Primary Node Count Graph

Ideal
Actual

700

400

Number of Primary Rgns Available

200

100

.
0 200 400 600 800 1000 1200 1400 1600
Iteration Number

Figure 1: Plot of running primary region count

Primary Node Running Total Graph
600000 T T

" ldeal |
Actual

500000

300000

200000

Running Total of Primary Rgn Count

100000

0

!
0 200 400 600 800 1000 1200 1400 1600
Iteration Number

Figure 2: Plot of cumulative total of primary
region count

with radial singularities (when 0 > 35 > —d)
at the points with coordinates z; = ay, j =
1,...,dand 1 < s < S, and integrated over the
d—dimensional unit hypercube. The amount of
available work thus increases with the number
of singularities S.

As the purpose of the experiment is to test
the ability to recognize the inherent degree
of singularity as it affects scalability, separate
from the parallel environment, we perform runs
using a synchronous global heap simulation for
p processors. At each iteration, all of the sim-
ulated workers synchronously remove from the
heap and then subdivide p regions, evaluate
the new subregions, and place the 2p new sub-
regions back on the heap. The simulator al-
lows for the effects of parallellization to be seen
on the amount and pattern of work performed,
but does not simulate timing.

Figures 3-8 show results of the experiment
for an integral in d = 3 dimensions, B =
—1.25,1 <s< S5, and S =1,...,20. The sin-
gularities are restricted to a fairly small portion
of the domain, 0 < ag < 0.25, and are added
consecutively.

Figure 3 plots the current primary region
count versus the number of iterations for prob-
lems with an odd number of singularities S for
1 < § < 15, and shows that the increase in
scalability for increasing S is recognized effec-
tively. Figure 5 shows the observed work re-
dundancy (the ratio of the parallel region eval-
uations to the sequential region evaluations),
as a function of the number of processors in
the synchronous global heap simulation, which
decreases for increasing S, matching our expec-
tations. The work redundancy also decreases
as the requested relative error is decreased for
a fixed number of singularities, which is shown
in Figure 6 for S = 9.

Figure 7 plots the observed work redun-
dancy as a function of both the number of
singularities (odd and even) and the requested
accuracy. To allow for a 3-dimensional plot
of primary region counts across multiple runs,
Figure 8 plots the average number (over all it-
erations) of available primary regions as a func-
tion of the number of singularities (for S odd)

Scalahility Measure Graph: Number of Primary Rgns

250

150

100

Number of Primary Rgns Available

0 L "\ L L L \‘ L Y L - - L ."‘
0 200 400 600 800 1000 1200 1400 1600
Iteration Number

Figure 3: Current number of primary regions,
for various numbers of singularities

Scalahility Measure Graph: Cumulative # of Primary Rgns

600000 T T " T
1sings
3sings
5sings -

500000 - __7sirigs .
- 9sings -

11sings
13 sings
15sings

200000

Cumulative # of Primary Rgns Available
T
.

.
600 800 1000 1200 1400 1600
Iteration Number

0 200 400

Figure 4: Cumulative number of primary re-
gions, for various numbers of singularities

Synchronous Global Heap Simulator Results
22

T
#sings=1 ——
#sings= 3 -
#sings=5 -
#sings= 7

#INgs=9 --—--
#eings=11 --+--
18 #sings=13 - x--
#8ings=15 -~ -x-- -

16

Work Redundancy

0 5 10 15 20 25 30
Number of Processors

Figure 5: Plot of work redundancy vs. number
of processors, for various numbers of singular-
ities

Synch. Global Heap. Simulator; 9 Singularities; Various eps-r

T
epsr=0.001 ——
eps-r=0.002 --------
eps-r=0.004 -+ *x
eps-r=0.006 YA
eps-r=0.008 ----- X
epsr=0.010 -
5r eps-r=0.020 -
eps-r=0.040 -
€psr=0.060 -+~
a4l eps-r=0.080 —>—
€psr=0.100 ------

Work Redundancy

0 5 10 15 20 25 30
Number of Processors

Figure 6: Plot of work redundancy vs. number
of processors, for various requested accuracies

Work Redundancy

11
10
9
8
7
6
5
4
3
2 0.1
1 .
% X
uested Accuracy

Figure 7: Work redundancy vs. number of sin-
gularities and requested accuracy

and the requested accuracy, conforming with
the observed behavior depicted in Figure 7.

3.2 Branch-and-Bound

We consider instances of the traveling sales-
person problem (TsP) for completely connected
graphs of degree k, for k = 3,...,8. The state
space is thus represented by a permutation tree
where the root has k£ —1 children and the total
number of nodes is 1+ §;§ J_o(k—i—1). For
the experiment we use Least Cost Branch-and-
Bound (LCB&B), with a naive bounding func-
tion equal to the cost of the path to each node.

We report results of comparing our scalability

/g. # of Primary Rgns on Heap

- #oflg ngularities

Figure 8: Number of Primary Regions vs.
number of singularities and requested accuracy

<0,I> Edge Overloading and Cumulative Primary Set Sizes
5e+07

Oédges overl‘oaded —
L 1 edge overloaded --------
4.5e+07 3 edges overloaded -
4e+07
g 8seto7r S T
* -
8; 3et07 |
g
£ 2.5e+07
ﬁ. 2e+07 |
£
3
O 15e+07 -
1e+07
5e+06 [
0
0 2000 4000 6000 8000 10000 12000 14000

Iteration

Figure 9: Cumulative primary set sizes vs. it-
eration with overloaded edges

<0,I> Edge Overloading and Primary Set Sizes

6000 | |
0 edges overloaded ——
1 edge overloaded -
3 edges overloaded -
5000 | |
e
@ 4000 R
B
£ o
&
o
5 2000
(8]
1000 | £
0 L |) L ‘ v
0 2000 4000 6000 8000 10000 12000 14000

Iteration

Figure 10: Current primary set sizes vs. itera-
tion with overloaded edges

measure to work efficiency observed from the
synchronous global heap simulator.

Starting from the instance with equal
weights (= 1) on all edges, we change the
weights by an amount greater than the length
of the tour on an increasing number S of edges,
giving rise to an increasing amount of pruning
in the state space tree, and thereby decreas-
ing the scalability. Note that a change to any
edge affects subtrees in a similar manner. For
example, assuming the path starts at vertex
1, applying the change to edge <1,¢> prunes
the subtree at the child of the root correspond-
ing to ¢ and causes similar effects where the
changed edge appears within the other sub-
trees.

Figure 9 shows the cumulative primary node
node set size for three fully connected graphs
of degree 8. Setting all edges to a cost of 1
forces the algorithm to examine every tour in
the graph and results in the maximum (over
all iterations) primary node set size and it-
eration count. Setting a single <1,/> to a
value greater than the tour length reduces the
maximum primary node set size by 719 nodes
and shortens the number of iterations by 1957,
while setting three such edges reduces the max-
imum by 2157 and shortens the iterations by
5871 steps. Note that for these regularly struc-
tured graphs, the primary node set is identical
to the critical node set.

<0,I> Edge Overloading and Work Efficiency

Oedgéwaloaded —
TN 1 edge overloaded ————
0.998 S N 3 edges overloaded - |
0.996
§
5 0.994
]
x
X 0992 |
2
0.99 -
0.988
0.986 - L L I I |
0 5 10 15 20 25 30 35

Number of Processors

Figure 11: Work efficiency vs. number of pro-
cessors with overloaded edges

We use the synchronous global heap simula-
tor to measure the work efficiency for solving
these TSP problems. Here, we define work ef-
ficiency as the ratio of the number of sequen-
tial node expansions to the number of paral-
lel iterations, divided by the number of pro-
cesses. This definition accounts for both redun-
dant node expansions and workers idled due
to a small active set size. To assess the pro-
posed scalability metric we compare the ob-
served work efficiency, as shown in Figure 11,
with our scalability measure. As the scalabil-
ity of the problem decreases (through the over-
loading of edge weights), work efficiency does
undergo a corresponding decrease.

4 Conclusions and Future

Work

The contributions of this paper include an
analogous treatment of certain branch-and-
bound and adaptive multivariate integration
algorithms in the framework of task refine-
ment. Concepts of branch-and-bound methods
are introduced for adaptive integration, such as
that of “critical nodes”. Vice versa, ideas are
extended to branch-and-bound strategies, such
as that of “singular” problem behavior, and
“adaptive” selection in LCB&B. Furthermore,
a parallel performance metric is introduced to

estimate the scalability of these methods for
irregular problem classes. Test cases are con-
structed, providing elaborate test results for a
synchronous global heap simulation.

Future work includes more extensive test-
ing for different problem classes, for example to
examine the effects of different bounding func-
tions on scalability in branch-and-bound. An-
other aspect is that of speedup anomaly (where
the parallelization “gets lucky” and searches a
smaller space). Whereas the present paper fo-
cused more on the inherent sequential behavior
of the problem, for which our approach using a
global heap simulation is well-suited, we intend
to also factor in effects from the parallel algo-
rithm implementation and environment (which
can only be done using actual parallel perfor-
mance).

References

[1] Jens Clausen and J. L. Traff. Do in-
herently sequential branch-and-bound al-
gorithms exist? Parallel Processing Let-
ters, 4(1 & 2):3-13, 1994.

[2] E. de Doncker, A. Gupta,
A. Genz, and R. Zanny.
http://www.cs.wmich.edu/parint, PARINT
Web Site.

[3] E. Horowitz and S. Sahni. Fundamentals of
Computer Algorithms. Computer Science
Press, 1984.

[4] R. Zanny. Efficiency of distributed prior-
ity queues in parallel adaptive integration.
Master’s thesis, Western Michigan Univer-
sity, 1999.

[5] R. Zanny and E. de Doncker. Work
anomaly in distributed adaptive partition-
ing algorithms. In Proceedings of the

High Performance Computing Symposium
(HPC’00), pages 178-183, 2000.

