
Salability of Branh-and-Bound and AdaptiveIntegrationRodger Zanny, Karlis Kaugars and Elise de DonkerDepartment of Computer SieneWestern Mihigan UniversityKalamazoo MI 49008Abstrat We address the salability of branh-and-bound and adaptive integration methods in theommon framework of task re�nement strategies.Not withstanding the di�erent nature (disrete ver-sus ontinuous) of the problems solved by these al-gorithms, we give an analogous treatment of sala-bility issues for these irregular problems, inludingnotions of inherent limitations on the salability ofproblem instanes, and introdue a parallel salabil-ity metri. Assessment and validation of the metriis based on detailed test results.Keywords: Branh-and-bound, adaptive integra-tion, salability, task re�nement, parallel branh-and-bound.
1 IntrodutionWe address a lass of algorithms whih proeedby seleting and re�ning tasks. Using globalseletion riteria, the value of these methodsis lear for takling irregular problems, withproblem hot spots given onsiderable and au-tomati attention through loal re�nement. Asa result of inherently sequential problem be-havior and global algorithm seletion riteria,parallel performane is often a�eted by poorsalability. We explore similarities betweenadaptive partitioning methods for multivariateintegration (ubature) and branh-and-boundstrategies.

1.1 TerminologyAn Adaptive Cubature (a) algorithm at-tempts to approximate a given integral towithin a requested auray, by suessive re-�nement of the domain of integration. Thesubdivision struture of the domain allows fora tree representation of the examined subprob-lems. Eah node in the region subdivision treeorresponds to a region, and its hildren nodesto the subregions obtained from the parent re-gion within one subdivision step. At any stageof the algorithm, the leaf nodes orrespond tothe urrently available (ative) regions.Spei�ally, a Global a (ga) method at-tempts to ahieve the requested auray glob-ally, over the entire ative set of regions. Thepriority for subdivision is used to key a pri-ority queue data struture. For example, theParInt [2℄ ga selets the next region basedon its loal estimated absolute integration er-ror, and bisets the region perpendiularly tothe diretion where the integrand is estimatedto vary the most. The subdivision tree is thusa binary tree. We use a heap-based priorityqueue to manage the ative set.Classially, a Loal a (la) method subdi-vides a region until a loal aeptane riterionis reahed (suh as loal estimated absoluteerror not exeeding the global absolute toler-ane times the ratio of the subregion's volumeto that of the original domain), upon whihthe subregion beomes inative or is disarded.This subdivision proedure orresponds to adepth-�rst generation of the subdivision tree



and an be implemented using a stak.Branh-and-bound (b&b) methods, whihare used to searh the state spae of an opti-mization problem, proeed by partitioning thesolution spae. The entire spae is representedat the root node of the orresponding b&b tree.The hildren at eah node represent the sub-spaes obtained by branhing, or subdividingthe solution spae of the parent node. Eahiteration of a b&b proedure selets the nextnode from whih to branh based on boundsestimated for the solution at eah node. Thenode's hildren with their bounds are gener-ated. Comparison of a hild's bound with theurrent best solution (if one exists so far) al-lows for the disarding of inferior nodes. Non-disarded (live) nodes are added to the ativeset.b&b strategies inlude lb&b where thenext node to branh from is seleted as theone with Least Cost [3℄. As in ga, lb&b re-quires the maintainane of a priority queue. Asin la, the tree an be explored depth-�rst (us-ing a stak), whereas breadth-�rst explorationorresponds to using a fifo queue.1.2 Irregular Problems / Salabilityga is generally onsidered superior to lamethods espeially for dealing with irregularproblems, suh as integrand singularities orpeaks. The fat that ga methods rely on aform of global priority queue, as well as updat-ing of global data, presents a disadvantage withrespet to parallelizing these algorithms, espe-ially in a distributed environment. Maintain-ing a global heap is unsuited in view of om-muniation expense [4℄. Alternatively, multi-ple, distributed, loal heap strutures, whihfor irregular problems or on heterogeneous pro-essors will grow and shrink at di�erent rates,imply the need for load balaning, again inur-ring ommuniation osts.In ga and lb&b, proessors an work onnon-globally-optimal subproblems (given im-perfet load balaning). Furthermore, theremay not be enough \important" subproblemsfor all proessors. As a onsequene, there

may be work redundany, de�ned as the ex-tra work (e.g., extra node expansions) done bythe parallel algorithm, when ompared withthe sequential algorithm. Exessive work re-dundany is termed work anomaly [5℄. Thisis espeially prevalent in ga, as nodes arenever eliminated. As a trade-o�, proessors areidled in the absene of any work to perform, asis the ase in la and b&b strategies, wherenon-promising nodes are killed. Both work re-dundany and idle time have an adverse andproportional e�et on speedup and parallel ef-�ieny.Furthermore, given a basi problem solvingmethod (suh as ga or b&b), the problemsof redundany and idle time is in some asesinherent to the spei� problem being solved:no tweaking of the algorithm an avoid theanomalous behavior rooted in the problem in-stane.Subsequently in this paper we will estimatethe inherent non-salability of ertain irregularproblem lasses. Setion 2 introdues a sala-bility metri whih an be used for ga andlb&b. Setion 3 gives results for test aseswhere the amount of inherent salability in aproblem is varied, resulting in orrespondinghanges both in terms of predited behavior bythe metri, and observed behavior using a syn-hronous global heap simulation for the ativeset. Setion 4 gives onlusions and addressesfuture work.2 Measures of SalabilityIn [1℄, the number of ritial nodes of a branh-and-bound problem instane is used as thesalability measure. A ritial node is de�nedas a node in the searh spae whose boundfuntion value is stritly less than the opti-mal solution. The set of ritial nodes mustbe expanded by any sequential or parallel b&balgorithm to guarantee that the optimal solu-tion is found. The number of ritial nodes de-pends upon the problem, the problem instane,the bound funtion, and the branhing methodused.



If a problem has few ritial nodes, theremay not be enough available at any iterationof a parallel algorithm to keep a large numberof workers busy performing useful work. For agiven problem instane, a tight bound funtionwill redue the number of ritial nodes, redu-ing the node expansions needed to solve theproblem, but also reduing the salability. Aloose bound funtion will result in more ritialnodes and better salability, but more overallwork [1℄.Correspondingly, ertain nodes within a gaproblem must be expanded to reah a solu-tion. These regions at least inlude those ofwhih the error estimate exeeds the total re-quested auray; these regions an be onsid-ered the ritial regions. Without subdivid-ing these regions, the requested auray an-not be reahed. As in b&b, if the number ofthese ritial regions is large, so is the amountof important work available to workers at anygiven iteration, and therefore the salabilityimproves. The number of ritial regions de-pends upon the problem instane, the integra-tion rule, and the subdivision strategy.A related ategory of nodes is the set of pri-mary nodes. These are the nodes that are ex-panded in a sequential exeution of the b&bor ga algorithm. Every ritial node mustlearly also be a primary node. The numberof primary nodes is also a useful measure ofthe inherent salability of a problem, as thesequential solving of a problem allows for allinformation (whih would inlude global infor-mation in a parallel algorithm) to be availablethroughout the omputation, and in the ab-sene of speedup anomaly will result in a so-lution with a minimal number of node expan-sions. We have found this to be the ase inga as well.A weakness of using the number of thesetypes of nodes as a measure of salability isthat it does not reet the available work atany partiular moment during the exeution ofthe algorithm. A larger problem instane mayhave more ritial nodes than a smaller prob-lem instane, but at any given point in timeit may not o�er any additional amount of use-

ful work to the workers, as the ritial nodesare available only over the inreased number ofiterations it takes to solve the larger problem.For both b&b and ga, we propose as auseful measure of salability the number of pri-mary nodes that are on the algorithm's priorityqueue at any iteration, whih we term the ur-rent primary node ount. For b&b, this mea-sure orresponds to the ative set size duringa sequential run, assuming that nodes on theheap that are dominated by a new best solu-tion are removed from the heap as soon as thenew solution is foundA related measure is of ourse the urrentritial node ount, the urrent number of rit-ial nodes on the priority queue.Figure 1 shows the urrent primary regionount, graphed aross the iterations, for theintegration of the funtion f(x; y; z) = 1=(x +y + z)2, over the unit ube. The \ideal" lineon the graph represents the maximum possi-ble number of primary regions available at anyiteration. In this ideally salable ase, every re-gion plaed on the heap is assumed to be a pri-mary region; at the half-way point through theexeution, the dereasing number of remainingiterations then begins to redue the numberof regions on the heap that ould later be re-moved. If we de�ne pi to be the number ofurrent primary regions at iteration i, then auseful measure is i = Pij=1 pj, the umula-tive total of the primary node ounts. Figure 2plots the atual and maximum, or ideal, i val-ues for the data from Figure 1.3 Experimental Results3.1 Adaptive IntegrationTo test the proposed salability metri foradaptive integration we onsider a problemwhih allows for varying the atual degree ofsalability. The integrand funtion is of theform f(x) = SXs=1( dXj=1(xj � �s)2)�s ;



0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 P

ri
m

ar
y 

R
gn

s 
A

va
ila

bl
e

Iteration Number

Current Primary Node Count Graph

Ideal
Actual

Figure 1: Plot of running primary region ount
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Figure 2: Plot of umulative total of primaryregion ount

with radial singularities (when 0 > �s > �d)at the points with oordinates xj = �s; j =1; : : : ; d and 1 � s � S; and integrated over thed�dimensional unit hyperube. The amount ofavailable work thus inreases with the numberof singularities S.As the purpose of the experiment is to testthe ability to reognize the inherent degreeof singularity as it a�ets salability, separatefrom the parallel environment, we perform runsusing a synhronous global heap simulation forp proessors. At eah iteration, all of the sim-ulated workers synhronously remove from theheap and then subdivide p regions, evaluatethe new subregions, and plae the 2p new sub-regions bak on the heap. The simulator al-lows for the e�ets of parallellization to be seenon the amount and pattern of work performed,but does not simulate timing.Figures 3-8 show results of the experimentfor an integral in d = 3 dimensions, �s =�1:25; 1 � s � S; and S = 1; : : : ; 20: The sin-gularities are restrited to a fairly small portionof the domain, 0 � �s � 0:25, and are addedonseutively.Figure 3 plots the urrent primary regionount versus the number of iterations for prob-lems with an odd number of singularities S for1 � S � 15; and shows that the inrease insalability for inreasing S is reognized e�e-tively. Figure 5 shows the observed work re-dundany (the ratio of the parallel region eval-uations to the sequential region evaluations),as a funtion of the number of proessors inthe synhronous global heap simulation, whihdereases for inreasing S, mathing our expe-tations. The work redundany also dereasesas the requested relative error is dereased fora �xed number of singularities, whih is shownin Figure 6 for S = 9.Figure 7 plots the observed work redun-dany as a funtion of both the number ofsingularities (odd and even) and the requestedauray. To allow for a 3-dimensional plotof primary region ounts aross multiple runs,Figure 8 plots the average number (over all it-erations) of available primary regions as a fun-tion of the number of singularities (for S odd)
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Figure 3: Current number of primary regions,for various numbers of singularities
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Figure 4: Cumulative number of primary re-gions, for various numbers of singularities
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Figure 5: Plot of work redundany vs. numberof proessors, for various numbers of singular-ities
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Figure 6: Plot of work redundany vs. numberof proessors, for various requested auraies
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Figure 7: Work redundany vs. number of sin-gularities and requested aurayand the requested auray, onforming withthe observed behavior depited in Figure 7.3.2 Branh-and-BoundWe onsider instanes of the traveling sales-person problem (tsp) for ompletely onnetedgraphs of degree k, for k = 3; : : : ; 8. The statespae is thus represented by a permutation treewhere the root has k�1 hildren and the totalnumber of nodes is 1+Pk�2j=0 Qji=0(k�i�1). Forthe experiment we use Least Cost Branh-and-Bound (lb&b), with a naive bounding fun-tion equal to the ost of the path to eah node.We report results of omparing our salability
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Figure 8: Number of Primary Regions vs.number of singularities and requested auray
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Figure 9: Cumulative primary set sizes vs. it-eration with overloaded edges
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Figure 10: Current primary set sizes vs. itera-tion with overloaded edgesmeasure to work eÆieny observed from thesynhronous global heap simulator.Starting from the instane with equalweights (= 1) on all edges, we hange theweights by an amount greater than the lengthof the tour on an inreasing number S of edges,giving rise to an inreasing amount of pruningin the state spae tree, and thereby dereas-ing the salability. Note that a hange to anyedge a�ets subtrees in a similar manner. Forexample, assuming the path starts at vertex1, applying the hange to edge <1; `> prunesthe subtree at the hild of the root orrespond-ing to ` and auses similar e�ets where thehanged edge appears within the other sub-trees.Figure 9 shows the umulative primary nodenode set size for three fully onneted graphsof degree 8. Setting all edges to a ost of 1fores the algorithm to examine every tour inthe graph and results in the maximum (overall iterations) primary node set size and it-eration ount. Setting a single < 1; ` > to avalue greater than the tour length redues themaximum primary node set size by 719 nodesand shortens the number of iterations by 1957,while setting three suh edges redues the max-imum by 2157 and shortens the iterations by5871 steps. Note that for these regularly stru-tured graphs, the primary node set is identialto the ritial node set.
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Figure 11: Work eÆieny vs. number of pro-essors with overloaded edgesWe use the synhronous global heap simula-tor to measure the work eÆieny for solvingthese tsp problems. Here, we de�ne work ef-�ieny as the ratio of the number of sequen-tial node expansions to the number of paral-lel iterations, divided by the number of pro-esses. This de�nition aounts for both redun-dant node expansions and workers idled dueto a small ative set size. To assess the pro-posed salability metri we ompare the ob-served work eÆieny, as shown in Figure 11,with our salability measure. As the salabil-ity of the problem dereases (through the over-loading of edge weights), work eÆieny doesundergo a orresponding derease.4 Conlusions and FutureWorkThe ontributions of this paper inlude ananalogous treatment of ertain branh-and-bound and adaptive multivariate integrationalgorithms in the framework of task re�ne-ment. Conepts of branh-and-bound methodsare introdued for adaptive integration, suh asthat of \ritial nodes". Vie versa, ideas areextended to branh-and-bound strategies, suhas that of \singular" problem behavior, and\adaptive" seletion in lb&b. Furthermore,a parallel performane metri is introdued to

estimate the salability of these methods forirregular problem lasses. Test ases are on-struted, providing elaborate test results for asynhronous global heap simulation.Future work inludes more extensive test-ing for di�erent problem lasses, for example toexamine the e�ets of di�erent bounding fun-tions on salability in branh-and-bound. An-other aspet is that of speedup anomaly (wherethe parallelization \gets luky" and searhes asmaller spae). Whereas the present paper fo-used more on the inherent sequential behaviorof the problem, for whih our approah using aglobal heap simulation is well-suited, we intendto also fator in e�ets from the parallel algo-rithm implementation and environment (whihan only be done using atual parallel perfor-mane).Referenes[1℄ Jens Clausen and J. L. Tr�a�. Do in-herently sequential branh-and-bound al-gorithms exist? Parallel Proessing Let-ters, 4(1 & 2):3{13, 1994.[2℄ E. de Donker, A. Gupta,A. Genz, and R. Zanny.http://www.s.wmih.edu/parint, ParIntWeb Site.[3℄ E. Horowitz and S. Sahni. Fundamentals ofComputer Algorithms. Computer SienePress, 1984.[4℄ R. Zanny. EÆieny of distributed prior-ity queues in parallel adaptive integration.Master's thesis, Western Mihigan Univer-sity, 1999.[5℄ R. Zanny and E. de Donker. Workanomaly in distributed adaptive partition-ing algorithms. In Proeedings of theHigh Performane Computing Symposium(HPC'00), pages 178{183, 2000.


