
S
alability of Bran
h-and-Bound and AdaptiveIntegrationRodger Zanny, Karlis Kaugars and Elise de Don
kerDepartment of Computer S
ien
eWestern Mi
higan UniversityKalamazoo MI 49008Abstra
t We address the s
alability of bran
h-and-bound and adaptive integration methods in the
ommon framework of task re�nement strategies.Not withstanding the di�erent nature (dis
rete ver-sus 
ontinuous) of the problems solved by these al-gorithms, we give an analogous treatment of s
ala-bility issues for these irregular problems, in
ludingnotions of inherent limitations on the s
alability ofproblem instan
es, and introdu
e a parallel s
alabil-ity metri
. Assessment and validation of the metri
is based on detailed test results.Keywords: Bran
h-and-bound, adaptive integra-tion, s
alability, task re�nement, parallel bran
h-and-bound.
1 Introdu
tionWe address a 
lass of algorithms whi
h pro
eedby sele
ting and re�ning tasks. Using globalsele
tion 
riteria, the value of these methodsis 
lear for ta
kling irregular problems, withproblem hot spots given 
onsiderable and au-tomati
 attention through lo
al re�nement. Asa result of inherently sequential problem be-havior and global algorithm sele
tion 
riteria,parallel performan
e is often a�e
ted by poors
alability. We explore similarities betweenadaptive partitioning methods for multivariateintegration (
ubature) and bran
h-and-boundstrategies.

1.1 TerminologyAn Adaptive Cubature (a
) algorithm at-tempts to approximate a given integral towithin a requested a

ura
y, by su

essive re-�nement of the domain of integration. Thesubdivision stru
ture of the domain allows fora tree representation of the examined subprob-lems. Ea
h node in the region subdivision tree
orresponds to a region, and its 
hildren nodesto the subregions obtained from the parent re-gion within one subdivision step. At any stageof the algorithm, the leaf nodes 
orrespond tothe 
urrently available (a
tive) regions.Spe
i�
ally, a Global a
 (ga
) method at-tempts to a
hieve the requested a

ura
y glob-ally, over the entire a
tive set of regions. Thepriority for subdivision is used to key a pri-ority queue data stru
ture. For example, theParInt [2℄ ga
 sele
ts the next region basedon its lo
al estimated absolute integration er-ror, and bise
ts the region perpendi
ularly tothe dire
tion where the integrand is estimatedto vary the most. The subdivision tree is thusa binary tree. We use a heap-based priorityqueue to manage the a
tive set.Classi
ally, a Lo
al a
 (la
) method subdi-vides a region until a lo
al a

eptan
e 
riterionis rea
hed (su
h as lo
al estimated absoluteerror not ex
eeding the global absolute toler-an
e times the ratio of the subregion's volumeto that of the original domain), upon whi
hthe subregion be
omes ina
tive or is dis
arded.This subdivision pro
edure 
orresponds to adepth-�rst generation of the subdivision tree



and 
an be implemented using a sta
k.Bran
h-and-bound (b&b) methods, whi
hare used to sear
h the state spa
e of an opti-mization problem, pro
eed by partitioning thesolution spa
e. The entire spa
e is representedat the root node of the 
orresponding b&b tree.The 
hildren at ea
h node represent the sub-spa
es obtained by bran
hing, or subdividingthe solution spa
e of the parent node. Ea
hiteration of a b&b pro
edure sele
ts the nextnode from whi
h to bran
h based on boundsestimated for the solution at ea
h node. Thenode's 
hildren with their bounds are gener-ated. Comparison of a 
hild's bound with the
urrent best solution (if one exists so far) al-lows for the dis
arding of inferior nodes. Non-dis
arded (live) nodes are added to the a
tiveset.b&b strategies in
lude l
b&b where thenext node to bran
h from is sele
ted as theone with Least Cost [3℄. As in ga
, l
b&b re-quires the maintainan
e of a priority queue. Asin la
, the tree 
an be explored depth-�rst (us-ing a sta
k), whereas breadth-�rst exploration
orresponds to using a fifo queue.1.2 Irregular Problems / S
alabilityga
 is generally 
onsidered superior to la
methods espe
ially for dealing with irregularproblems, su
h as integrand singularities orpeaks. The fa
t that ga
 methods rely on aform of global priority queue, as well as updat-ing of global data, presents a disadvantage withrespe
t to parallelizing these algorithms, espe-
ially in a distributed environment. Maintain-ing a global heap is unsuited in view of 
om-muni
ation expense [4℄. Alternatively, multi-ple, distributed, lo
al heap stru
tures, whi
hfor irregular problems or on heterogeneous pro-
essors will grow and shrink at di�erent rates,imply the need for load balan
ing, again in
ur-ring 
ommuni
ation 
osts.In ga
 and l
b&b, pro
essors 
an work onnon-globally-optimal subproblems (given im-perfe
t load balan
ing). Furthermore, theremay not be enough \important" subproblemsfor all pro
essors. As a 
onsequen
e, there

may be work redundan
y, de�ned as the ex-tra work (e.g., extra node expansions) done bythe parallel algorithm, when 
ompared withthe sequential algorithm. Ex
essive work re-dundan
y is termed work anomaly [5℄. Thisis espe
ially prevalent in ga
, as nodes arenever eliminated. As a trade-o�, pro
essors areidled in the absen
e of any work to perform, asis the 
ase in la
 and b&b strategies, wherenon-promising nodes are killed. Both work re-dundan
y and idle time have an adverse andproportional e�e
t on speedup and parallel ef-�
ien
y.Furthermore, given a basi
 problem solvingmethod (su
h as ga
 or b&b), the problemsof redundan
y and idle time is in some 
asesinherent to the spe
i�
 problem being solved:no tweaking of the algorithm 
an avoid theanomalous behavior rooted in the problem in-stan
e.Subsequently in this paper we will estimatethe inherent non-s
alability of 
ertain irregularproblem 
lasses. Se
tion 2 introdu
es a s
ala-bility metri
 whi
h 
an be used for ga
 andl
b&b. Se
tion 3 gives results for test 
aseswhere the amount of inherent s
alability in aproblem is varied, resulting in 
orresponding
hanges both in terms of predi
ted behavior bythe metri
, and observed behavior using a syn-
hronous global heap simulation for the a
tiveset. Se
tion 4 gives 
on
lusions and addressesfuture work.2 Measures of S
alabilityIn [1℄, the number of 
riti
al nodes of a bran
h-and-bound problem instan
e is used as thes
alability measure. A 
riti
al node is de�nedas a node in the sear
h spa
e whose boundfun
tion value is stri
tly less than the opti-mal solution. The set of 
riti
al nodes mustbe expanded by any sequential or parallel b&balgorithm to guarantee that the optimal solu-tion is found. The number of 
riti
al nodes de-pends upon the problem, the problem instan
e,the bound fun
tion, and the bran
hing methodused.



If a problem has few 
riti
al nodes, theremay not be enough available at any iterationof a parallel algorithm to keep a large numberof workers busy performing useful work. For agiven problem instan
e, a tight bound fun
tionwill redu
e the number of 
riti
al nodes, redu
-ing the node expansions needed to solve theproblem, but also redu
ing the s
alability. Aloose bound fun
tion will result in more 
riti
alnodes and better s
alability, but more overallwork [1℄.Correspondingly, 
ertain nodes within a ga
problem must be expanded to rea
h a solu-tion. These regions at least in
lude those ofwhi
h the error estimate ex
eeds the total re-quested a

ura
y; these regions 
an be 
onsid-ered the 
riti
al regions. Without subdivid-ing these regions, the requested a

ura
y 
an-not be rea
hed. As in b&b, if the number ofthese 
riti
al regions is large, so is the amountof important work available to workers at anygiven iteration, and therefore the s
alabilityimproves. The number of 
riti
al regions de-pends upon the problem instan
e, the integra-tion rule, and the subdivision strategy.A related 
ategory of nodes is the set of pri-mary nodes. These are the nodes that are ex-panded in a sequential exe
ution of the b&bor ga
 algorithm. Every 
riti
al node must
learly also be a primary node. The numberof primary nodes is also a useful measure ofthe inherent s
alability of a problem, as thesequential solving of a problem allows for allinformation (whi
h would in
lude global infor-mation in a parallel algorithm) to be availablethroughout the 
omputation, and in the ab-sen
e of speedup anomaly will result in a so-lution with a minimal number of node expan-sions. We have found this to be the 
ase inga
 as well.A weakness of using the number of thesetypes of nodes as a measure of s
alability isthat it does not re
e
t the available work atany parti
ular moment during the exe
ution ofthe algorithm. A larger problem instan
e mayhave more 
riti
al nodes than a smaller prob-lem instan
e, but at any given point in timeit may not o�er any additional amount of use-

ful work to the workers, as the 
riti
al nodesare available only over the in
reased number ofiterations it takes to solve the larger problem.For both b&b and ga
, we propose as auseful measure of s
alability the number of pri-mary nodes that are on the algorithm's priorityqueue at any iteration, whi
h we term the 
ur-rent primary node 
ount. For b&b, this mea-sure 
orresponds to the a
tive set size duringa sequential run, assuming that nodes on theheap that are dominated by a new best solu-tion are removed from the heap as soon as thenew solution is foundA related measure is of 
ourse the 
urrent
riti
al node 
ount, the 
urrent number of 
rit-i
al nodes on the priority queue.Figure 1 shows the 
urrent primary region
ount, graphed a
ross the iterations, for theintegration of the fun
tion f(x; y; z) = 1=(x +y + z)2, over the unit 
ube. The \ideal" lineon the graph represents the maximum possi-ble number of primary regions available at anyiteration. In this ideally s
alable 
ase, every re-gion pla
ed on the heap is assumed to be a pri-mary region; at the half-way point through theexe
ution, the de
reasing number of remainingiterations then begins to redu
e the numberof regions on the heap that 
ould later be re-moved. If we de�ne pi to be the number of
urrent primary regions at iteration i, then auseful measure is 
i = Pij=1 pj, the 
umula-tive total of the primary node 
ounts. Figure 2plots the a
tual and maximum, or ideal, 
i val-ues for the data from Figure 1.3 Experimental Results3.1 Adaptive IntegrationTo test the proposed s
alability metri
 foradaptive integration we 
onsider a problemwhi
h allows for varying the a
tual degree ofs
alability. The integrand fun
tion is of theform f(x) = SXs=1( dXj=1(xj � �s)2)�s ;
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Figure 1: Plot of running primary region 
ount
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Figure 2: Plot of 
umulative total of primaryregion 
ount

with radial singularities (when 0 > �s > �d)at the points with 
oordinates xj = �s; j =1; : : : ; d and 1 � s � S; and integrated over thed�dimensional unit hyper
ube. The amount ofavailable work thus in
reases with the numberof singularities S.As the purpose of the experiment is to testthe ability to re
ognize the inherent degreeof singularity as it a�e
ts s
alability, separatefrom the parallel environment, we perform runsusing a syn
hronous global heap simulation forp pro
essors. At ea
h iteration, all of the sim-ulated workers syn
hronously remove from theheap and then subdivide p regions, evaluatethe new subregions, and pla
e the 2p new sub-regions ba
k on the heap. The simulator al-lows for the e�e
ts of parallellization to be seenon the amount and pattern of work performed,but does not simulate timing.Figures 3-8 show results of the experimentfor an integral in d = 3 dimensions, �s =�1:25; 1 � s � S; and S = 1; : : : ; 20: The sin-gularities are restri
ted to a fairly small portionof the domain, 0 � �s � 0:25, and are added
onse
utively.Figure 3 plots the 
urrent primary region
ount versus the number of iterations for prob-lems with an odd number of singularities S for1 � S � 15; and shows that the in
rease ins
alability for in
reasing S is re
ognized e�e
-tively. Figure 5 shows the observed work re-dundan
y (the ratio of the parallel region eval-uations to the sequential region evaluations),as a fun
tion of the number of pro
essors inthe syn
hronous global heap simulation, whi
hde
reases for in
reasing S, mat
hing our expe
-tations. The work redundan
y also de
reasesas the requested relative error is de
reased fora �xed number of singularities, whi
h is shownin Figure 6 for S = 9.Figure 7 plots the observed work redun-dan
y as a fun
tion of both the number ofsingularities (odd and even) and the requesteda

ura
y. To allow for a 3-dimensional plotof primary region 
ounts a
ross multiple runs,Figure 8 plots the average number (over all it-erations) of available primary regions as a fun
-tion of the number of singularities (for S odd)
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Figure 3: Current number of primary regions,for various numbers of singularities
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Figure 4: Cumulative number of primary re-gions, for various numbers of singularities
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Figure 5: Plot of work redundan
y vs. numberof pro
essors, for various numbers of singular-ities
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Figure 7: Work redundan
y vs. number of sin-gularities and requested a

ura
yand the requested a

ura
y, 
onforming withthe observed behavior depi
ted in Figure 7.3.2 Bran
h-and-BoundWe 
onsider instan
es of the traveling sales-person problem (tsp) for 
ompletely 
onne
tedgraphs of degree k, for k = 3; : : : ; 8. The statespa
e is thus represented by a permutation treewhere the root has k�1 
hildren and the totalnumber of nodes is 1+Pk�2j=0 Qji=0(k�i�1). Forthe experiment we use Least Cost Bran
h-and-Bound (l
b&b), with a naive bounding fun
-tion equal to the 
ost of the path to ea
h node.We report results of 
omparing our s
alability
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Figure 9: Cumulative primary set sizes vs. it-eration with overloaded edges
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Figure 10: Current primary set sizes vs. itera-tion with overloaded edgesmeasure to work eÆ
ien
y observed from thesyn
hronous global heap simulator.Starting from the instan
e with equalweights (= 1) on all edges, we 
hange theweights by an amount greater than the lengthof the tour on an in
reasing number S of edges,giving rise to an in
reasing amount of pruningin the state spa
e tree, and thereby de
reas-ing the s
alability. Note that a 
hange to anyedge a�e
ts subtrees in a similar manner. Forexample, assuming the path starts at vertex1, applying the 
hange to edge <1; `> prunesthe subtree at the 
hild of the root 
orrespond-ing to ` and 
auses similar e�e
ts where the
hanged edge appears within the other sub-trees.Figure 9 shows the 
umulative primary nodenode set size for three fully 
onne
ted graphsof degree 8. Setting all edges to a 
ost of 1for
es the algorithm to examine every tour inthe graph and results in the maximum (overall iterations) primary node set size and it-eration 
ount. Setting a single < 1; ` > to avalue greater than the tour length redu
es themaximum primary node set size by 719 nodesand shortens the number of iterations by 1957,while setting three su
h edges redu
es the max-imum by 2157 and shortens the iterations by5871 steps. Note that for these regularly stru
-tured graphs, the primary node set is identi
alto the 
riti
al node set.
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Figure 11: Work eÆ
ien
y vs. number of pro-
essors with overloaded edgesWe use the syn
hronous global heap simula-tor to measure the work eÆ
ien
y for solvingthese tsp problems. Here, we de�ne work ef-�
ien
y as the ratio of the number of sequen-tial node expansions to the number of paral-lel iterations, divided by the number of pro-
esses. This de�nition a

ounts for both redun-dant node expansions and workers idled dueto a small a
tive set size. To assess the pro-posed s
alability metri
 we 
ompare the ob-served work eÆ
ien
y, as shown in Figure 11,with our s
alability measure. As the s
alabil-ity of the problem de
reases (through the over-loading of edge weights), work eÆ
ien
y doesundergo a 
orresponding de
rease.4 Con
lusions and FutureWorkThe 
ontributions of this paper in
lude ananalogous treatment of 
ertain bran
h-and-bound and adaptive multivariate integrationalgorithms in the framework of task re�ne-ment. Con
epts of bran
h-and-bound methodsare introdu
ed for adaptive integration, su
h asthat of \
riti
al nodes". Vi
e versa, ideas areextended to bran
h-and-bound strategies, su
has that of \singular" problem behavior, and\adaptive" sele
tion in l
b&b. Furthermore,a parallel performan
e metri
 is introdu
ed to

estimate the s
alability of these methods forirregular problem 
lasses. Test 
ases are 
on-stru
ted, providing elaborate test results for asyn
hronous global heap simulation.Future work in
ludes more extensive test-ing for di�erent problem 
lasses, for example toexamine the e�e
ts of di�erent bounding fun
-tions on s
alability in bran
h-and-bound. An-other aspe
t is that of speedup anomaly (wherethe parallelization \gets lu
ky" and sear
hes asmaller spa
e). Whereas the present paper fo-
used more on the inherent sequential behaviorof the problem, for whi
h our approa
h using aglobal heap simulation is well-suited, we intendto also fa
tor in e�e
ts from the parallel algo-rithm implementation and environment (whi
h
an only be done using a
tual parallel perfor-man
e).Referen
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