
1

ISBN 0-321-33025-0

Chapter 2

Evolution of the
Major Programming
Languages

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-2

Chapter 2 Topics

1. Zuse’s Plankalkul
2. Minimal Hardware Programming:

Pseudocodes
3. The IBM 704 and Fortran
4. Functional Programming: LISP
5. The First Step Toward Sophistication:

ALGOL 60
6. Computerizing Business Records: COBOL
7. The Beginnings of Timesharing: BASIC

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-3

Chapter 2 Topics (continued)

8. Everything for Everybody: PL/I
9. Two Early Dynamic Languages: APL and

SNOBOL
10.The Beginings of Data Abstraction:

SIMULA 67
11.Orthogonal Design: ALGOL 68
12.Some Early Desscendants of the ALGOLs
13.Programming Based on Logic: Prolog
14.Hisotry’s Largest Design Effort: Ada

2

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-4

Chapter 2 Topics (continued)

15.Object-Oriented Programming: Smalltalk
16. Combining Imperative ad Object-

Oriented Features: C++
17. An Imperative-Based Object-Oriented

Language: Java
18. Scripting Languages: JavaScript, PHP, and

Python
19. A C-Based Language for the New

Millennium: C#
20. Markup/Programming Hybrid Languages

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-5

Genealogy of Common Languages

ISBN 0-321-33025-0

Chapter 3

Describing Syntax
and Semantics

3

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-7

Chapter 3 Topics

1. Introduction
2. The General Problem of Describing Syntax
3. Formal Methods of Describing Syntax
4. Attribute Grammars
5. Describing the Meanings of Programs:

Dynamic Semantics

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-8

3.1 Introduction

• Syntax: the form or structure of the
expressions, statements, and program
units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition
– Users of a language definition

• Other language designers
• Implementers
• Programmers (the users of the language)

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-9

3.2 The General Problem of Describing
Syntax: Terminology

• A sentence is a string of characters over
some alphabet

• A language is a set of sentences
• A lexeme is the lowest level syntactic unit

of a language (e.g., *, sum, begin)
• A token is a category of lexemes (e.g.,

identifier)

4

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-10

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings of the

language and decides whether the input strings
belong to the language

– Example: syntax analysis part of a compiler
– Detailed discussion in Chapter 4

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular

sentence is correct by comparing it to the
structure of the generator

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-11

3.3 Formal Methods of Describing
Syntax
• Backus-Naur Form and Context-Free

Grammars
– Most widely known method for describing

programming language syntax
• Extended BNF

– Improves readability and writability of BNF
• Grammars and Recognizers

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-12

Chapter 4 Topics

1. Introduction
2. Lexical Analysis
3. The Parsing Problem
4. Recursive-Descent Parsing
5. Bottom-Up Parsing

5

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-13

4.1 Introduction

• The syntax analysis portion of a language
processor nearly always consists of two
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a
regular grammar)

– A high-level part called a syntax analyzer, or
parser (mathematically, a push-down
automaton based on a context-free grammar,
or BNF)

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-14

4.1 Introduction (cont.)

• Reasons to use BNF to describe syntax:
– Provides a clear and concise syntax description
– The parser can be based directly on the BNF
– Parsers based on BNF are easy to maintain

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-15

4.1 Introduction (cont.)

• Reasons to separate lexical and syntax
analysis:
– Simplicity - less complex approaches can be

used for lexical analysis; separating them
simplifies the parser

– Efficiency - separation allows optimization of
the lexical analyzer

– Portability - parts of the lexical analyzer may
not be portable, but the parser always is
portable

6

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-16

4.2 Lexical Analysis

• A lexical analyzer is a pattern matcher for
character strings

• A lexical analyzer is a “front-end” for the
parser

• Identifies substrings of the source program
that belong together - lexemes
– Lexemes match a character pattern, which is

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-17

4.2 Lexical Analysis (cont.)

• The lexical analyzer is usually a function that is
called by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a

software tool that constructs table-driven lexical
analyzers given such a description

– Design a state diagram that describes the tokens and
write a program that implements the state diagram

– Design a state diagram that describes the tokens and
hand-construct a table-driven implementation of the
state diagram

• book only discusses approach 2

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-18

Lexical Analysis

• Using Finite State Machines to implement lexical
scan

• Example: Design a FSM which translates input text
line by line so that the following rule is followed
correcting spelling mistakes wrt “ei” and “cei”: “i
should be followed by e except when immediately
followed by c”.

• Input: She will eat a pie if there is a pei and when
she recieves it.

• Output: She will eat a pie if there is a pie and when
she receives it.

7

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-19

4.2 Lexical Analysis (cont.)

• State diagram design:
– A naïve state diagram would have a transition

from every state on every character in the
source language - such a diagram would be
very large!

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-20

4.2 Lexical Analysis (cont.)

• In many cases, transitions can be combined
to simplify the state diagram
– When recognizing an identifier, all uppercase

and lowercase letters are equivalent
• Use a character class that includes all letters

– When recognizing an integer literal, all digits are
equivalent - use a digit class

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-21

4.2 Lexical Analysis (cont.)

• Reserved words and identifiers can be
recognized together (rather than having a
part of the diagram for each reserved word)
– Use a table lookup to determine whether a

possible identifier is in fact a reserved word

8

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-22

4.2 Lexical Analysis (cont.)

• Convenient utility subprograms:
– getChar - gets the next character of input, puts

it in nextChar, determines its class and puts
the class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated,
lexeme

– lookup - determines whether the string in
lexeme is a reserved word (returns a code)

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-23

State Diagram

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-24

4.2 Lexical Analysis (cont.)

Implementation (assume initialization):
int lex() {

getChar();

switch (charClass) {

case LETTER:

addChar();

getChar();

while (charClass == LETTER || charClass == DIGIT)

{

addChar();

getChar();

}

return lookup(lexeme);

break;

…

9

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-25

4.2 Lexical Analysis (cont.)

…
case DIGIT:

addChar();

getChar();

while (charClass == DIGIT) {

addChar();

getChar();

}

return INT_LIT;

break;

} /* End of switch */

} /* End of function lex */

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 2-26

HW problems for practice on FSMs

• Design a FSM that translates text in which
properly delimited the is replaced by a.

• Design a FSM to strip out comments from a
C or C++ program.

• Design a FSM to recognize identifiers in C.

