MAC Layer Design for Wireless Sensor Networks

Wei Ye
USC Information Sciences Institute
Updated by Ajay Gupta, WMU

Characteristics of Sensor Network

• A special wireless ad hoc network
 – Large number of nodes ➔ Scalability & Self-configuration
 – Battery powered ➔ Energy efficiency
 – Topology and density change ➔ Adaptivity
 – Nodes for a common task ➔ Fairness not important
 – In-network data processing ➔ Message-level Latency
• Sensor-net applications
 – Sensor-triggered bursty traffic ➔ Adaptivity
 – Can often tolerate some delay ➔ Trade for energy
 • Speed of a moving object places a bound on network reaction time

MAC and Its Classification

• Medium Access Control (MAC)
 – When and how nodes access the shared channel
• Classification of MAC protocols
 – Scheduled protocols
 • Schedule nodes onto different sub-channels
 • Examples: TDMA, FDMA, CDMA
 – Contention-based protocols
 • Nodes compete in probabilistic coordination
 • Examples: ALOHA (pure & slotted), CSMA
MAC Attributes

- Collision avoidance
 - Basic task of a MAC protocol
- Energy efficiency
- Scalability and adaptivity
 - Network size, node density and topology change
- Channel utilization
- Latency
- Throughput
- Fairness

Energy Efficiency in MAC Design

- Energy is primary concern in sensor networks
- What causes energy waste?
 - Collisions
 - Control packet overhead
 - Overhearing unnecessary traffic
 - Long idle time
 - bursty traffic in sensor-net apps
 - Idle listening consumes 50—100% of the power for receiving (Stemm97, Kasten)

Contestation-Based Protocols

- Contention-based protocols
 - CSMA — Carrier Sense Multiple Access
 - Listening before transmitting
 - Not enough for multi-hop networks (collision at receiver)
 - CSMA/CA (CA stands for Collision Avoidance)
 - RTS/CTS handshake before send data
 - Other nodes (e.g. node c) backoff

Hidden terminal: a is hidden from c’s carrier sense
Hidden Terminal Problem

- A and C cannot hear each other.
- A sends to B, C cannot receive A.
- C wants to send to B, C senses a "free" medium (CS fails).
- Collision occurs at B.
- A cannot receive the collision (CD fails).
- A is "hidden" for C.

Exposed Terminal Problem

- A starts sending to B.
- C senses carrier, finds medium in use and has to wait for A->B to end.
- D is outside the range of A, therefore waiting is not necessary.

Solution for Hidden Terminals

- A first sends a Request-to-Send (RTS) to B
- On receiving RTS, B responds Clear-to-Send (CTS)
- Hidden node C overhears CTS and keeps quiet
 - Transfer duration is included in both RTS and CTS
- Exposed node overhears a RTS but not the CTS
 - D's transmission cannot interfere at B
Contention-Based Protocols

- Contention-based protocols (contd.)
 - MACA — Multiple Access w/ Collision Avoidance
 - Add duration field in RTS/CTS informing other node about their backoff time
 - MACAW — improved over MACA
 - RTS/CTS/DATA/ACK
 - Fast error recovery at link layer
 - IEEE 802.11 Distributed Coordination Function (DCF)
 - Largely based on MACAW

Contention-Based Protocols

- IEEE 802.11 DCF: ad hoc mode
 - Virtual and physical carrier sense (CS)
 - Network allocation vector (NAV), duration field
 - Binary exponential backoff
 - RTS/CTS/DATA/ACK for unicast packets
 - Broadcast packets are directly sent after CS
 - Fragmentation support
 - RTS/CTS reserve time for first (fragment + ACK)
 - First (fragment + ACK) reserve time for second…
 - Give up transmission when error happens

Contention-Based Protocols

- Tx rate control — by Woo and Culler
 - Based on a special network setup
 - A base station tries to collect data equally from all sensors in the network
 - CSMA + adaptive rate control
 - Promote fair bandwidth allocation to all sensors
 - Nodes close to the base station forward more traffic, and have less chances to send their own data
 - Helps in congestion avoidance
Scheduled vs. Contention Protocols

<table>
<thead>
<tr>
<th></th>
<th>Scheduled Protocols</th>
<th>Contention Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Scalability and adaptivity</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Multi-hop communication</td>
<td>Difficult</td>
<td>Easy</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>Strict</td>
<td>Loose or not required</td>
</tr>
</tbody>
</table>

Energy Efficiency in Contention Protocols
- Contention-based protocols need to work hard in all directions for energy savings
 - Reduce idle listening – support low duty cycle
 - Better collision avoidance
 - Reduce control overhead
 - Avoid unnecessary overhearing

Energy-Efficient MAC Design
- PAMAS: Power Aware Multi-Access with Signaling — by Singh and Raghavendra
 - Improve energy efficiency from MACA
 - Avoid overhearing by putting node into sleep
 - Use separate control and data channels
 - RTS, CTS, busy tone to avoid collision
 - Probe packets to find neighbors transmission time
 - Increased hardware complexity
 - Two channels need to work simultaneously, meaning two radio systems.
Energy-Efficient MAC Design

- Piconet — by Bennett, Clarke, et al.
 - Not the same piconet in Bluetooth
 - Low duty-cycle operation — energy efficient
 - Sleep for 30s, beacon, and listen for a while
 - Sending node needs to listen for receiver’s beacon first, then
 - CSMA before sending data
 - May wait for long time before sending

Energy-Efficient MAC Design

- Power save (PS) mode in IEEE 802.11 DCF
 - Assumption: all nodes are synchronized and can hear each other (single hop)
 - Nodes in PS mode periodically listen for beacons & ATIMs (ad hoc traffic indication messages)
 - Beacon: timing and physical layer parameters
 - All nodes participate in periodic beacon generation
 - ATIM: tell nodes in PS mode to stay awake for Rx
 - ATIM follows a beacon sent/received
 - Unicast ATIM needs acknowledgement
 - Broadcast ATIM wakes up all nodes — no ACK

Energy-Efficient MAC Design

- Unicast example of PS mode in 802.11 DCF
Energy-Efficient MAC Design

- Asynchronous sleeping – by Tseng, et al.
 - Extend 802.11 PS mode to Multi-hops
 - Nodes do not synchronize with each other
 - Designed 3 sleep patterns — ensure nodes listen intervals overlap, example:
 - Periodically fully-awake interval: similar to S-MAC
 - Problem on broadcast — wake up each neighbor

Energy-Efficient MAC Design

- ZigBee
 - Industry standard through application profiles running over IEEE 802.15.4 radios
 - Target applications are sensors networks, interactive toys, smart badges, remote controls, and home automation

Energy-Efficient MAC Design

- ZigBee (Cont.)
 - Three devices specified
 - Network Coordinator
 - Full Function Device (FFD)
 - Can talk to any device, more computing power
 - Reduced Function Device (RFD)
 - Can only talk to a FFD, simple for energy conservation
 - CSMA/CA with optional ACKs on data packets
 - Optional beacons with superframes
 - Optional guaranteed time slots (GTS), which supports contention-free access
Case Study: S-MAC

- S-MAC — by Ye, Heidemann and Estrin
- Tradeoffs
 - Latency
 - Fairness
 - Energy

- Major components in S-MAC
 - Periodic listen and sleep
 - Collision avoidance
 - Overhearing avoidance
 - Massage passing

Coordinated Sleeping

- Problem: Idle listening consumes significant energy
- Solution: Periodic listen and sleep
 - Turn off radio when sleeping
 - Reduce duty cycle to ~ 10% (120ms on/1.2s off)

Coordinated Sleeping

- Schedules can differ
 - Prefer neighboring nodes have same schedule — easy broadcast & low control overhead
 - Border nodes: two schedules or broadcast twice
Coordinated Sleeping

- Schedule Synchronization
 - New node tries to follow an existing schedule
 - Remember neighbors’ schedules
 - to know when to send to them
 - Each node broadcasts its schedule every few periods of sleeping and listening
 - Re-sync when receiving a schedule update
- Periodic neighbor discovery
 - Keep awake in a full sync interval over long periods

Coordinated Sleeping

- Adaptive listening
 - Reduce multi-hop latency due to periodic sleep
 - Wake up for a short period of time at end of each transmission

Collision Avoidance

- S-MAC is based on contention
- Similar to IEEE 802.11 ad hoc mode (DCF)
 - Physical and virtual carrier sense
 - Randomized backoff time
 - RTS/CTS for hidden terminal problem
 - RTS/CTS/DATA/ACK sequence
Overhearing Avoidance

- **Problem:** Receive packets destined to others
- **Solution:** Sleep when neighbors talk
 - Basic idea from PAMAS (Singh, Raghavendra 1998)
 - But we only use in-channel signaling
- **Who should sleep?**
 - All immediate neighbors of sender and receiver
- **How long to sleep?**
 - The *duration* field in each packet informs other nodes the sleep interval

Message Passing

- **Problem:** Sensor net in-network processing requires *entire* message
- **Solution:** Don’t interleave different messages
 - Long message is fragmented & sent in burst
 - RTS/CTS reserve medium for entire message
 - Fragment-level error recovery — ACK
 — extend Tx time and re-transmit immediately
- **Other nodes sleep for whole message time**

Implementation on Testbed Nodes

- **Platform**
 - Mica Motes (UC Berkeley)
 - 8-bit CPU at 4MHz
 - 128KB flash, 4KB RAM
 - 20Kbps radio at 433MHz
 - TinyOS: event-driven
- **Configurable S-MAC options**
 - Low duty cycle with adaptive listen
 - Low duty cycle without adaptive listen
 - Fully active mode (no periodic sleeping)
Experiments: two-hop network

- Topology and measured energy consumption on source nodes
 - Source 1
 - Source 2
 - Sink 1
 - Sink 2
- S-MAC consumes much less energy than 802.11-like protocol w/o sleeping
- At heavy load, overhearing avoidance is the major factor in energy savings
- At light load, periodic sleeping plays the key role

Energy Consumption over Multi-Hops

- Ten-hop linear network at different traffic load
- 3 configurations of S-MAC
- At light traffic load, periodic sleeping has significant energy savings over fully active mode
- Adaptive listen saves more at heavy load by reducing latency

Latency as Hops Increase

- Adaptive listen significantly reduces latency caused by periodic sleeping
Throughput as Hops Increase

- Adaptive listen significantly increases throughput
 - Using less time to pass the same amount of data

```
Effective data throughput under highest traffic load
```

- Number of hops
- Effective data throughput (Byte/S)
- No sleep cycles
- 10% duty cycle with adaptive listen
- 10% duty cycle without adaptive listen

Combined Energy and Throughput

- Periodic sleeping provides excellent performance at light traffic load
- With adaptive listening, S-MAC achieves about the same performance as no-sleep mode at heavy load

```
Energy-time product per byte (J*S/byte)
```

- Message inter-arrival period (S)
- No sleep cycles
- 10% duty cycle without adaptive listen
- 10% duty cycle with adaptive listen