
Arrays

Definition

An array is a group of consecutive
memory locations (contiguous) all
consisting of the same type.

Individual memory elements within the
array can be accessed via a common
identifier (the name of the array) and
an integer-valued expression. We will
see how this is done as we develop
and use arrays.

Reference Type

Arrays in C# are objects, and they are
of reference type.

Defining an Array in C#

There are two steps in establishing an array.

First: Declare an identifier as an array type:

Second: Allocate the actual array object.

Example:

int[] Grades; //Grades will reference an

//array of integers:

Grades = new int[50]; //Allocate space for

//50 integers

Same Declaration

int[] Grades = new int[50];

In general,

in C#, given a type , the presence of []
following the type, represents an
array type whose entries are of the
specified type:

int[] //array of integers

char[] //array of characters

double[] //an array of doubles.

Yet another way to declare an
array.

int[] List = {1,2,10,20,30,11,12};

This declares and initializes the array.

Here, we are not specifically calling the
new to allocate memory at runtime.
List will consist of 7 integer elements
containing the numbers 1, 2, 10, 20,
30, 11, & 12 respectively.

Accessing Individual Elements

If an array has N elements (N>0), then
the elements in that array can be
accessed by the array’s name and an
index that ranges from 0 to N-1
inclusive.

Consider the example on the next slide.

int[] List = {1,2,10,20,30,11,12};

List[0] has value 1.

List[1] has value 2.

List[2] has value 10.

List[3] has value 20.

List[4] has value 30.

List[5] has value 11.

List[6] has value 12.

Terminology

In the example on the previous page:

List is the “name” of the array. Like a variable
identifier it can be any legal user-defined
identifier.

List[i] Placing [] after the name
“dereferences” the array and gives the
individual element. The quantity inside the
[] is called the index. It must be an
integer valued expression whose value is
from 0 to N-1 where N is the number of
elements in the array.

In general,

the name of an array is a reference
type. When it is dereferenced as
indicated before (name[expression])
the result might be a value type or a
reference type, depending on the
type of the array.

Example: List[i] from our previous
slides is a value type, since List is an
array of integers.

Length Property

Objects can have properties defined for them.
Arrays are objects and Length is a property
associated with any array object. A property
is accessed using the object name, the dot
operator, and the property name. For
example:

int[] X = {8,3,4,2,3,4}; X.Length has value 6.

There are six items in the array. Note that this
is analogous to the Length property
associated with strings.

Look at a problem:

Declare an array of size 1000 and fill it
with random integers in the range 1
to 20.

Problem (cont.)

Now add the code that will count the
number of times each number in the
range 1 to 20 was written into the
array.

Problem (cont.)

Now do the same thing as the previous
two steps, but generate and count
the 1000 numbers in the range 1 to
20, without storing all the numbers.

Problem 2.

Write a program that will ask the user to input
the number of random birthdays (numbers
in the range 1 to 365) that she would like
to generate. Then generate that many
random birthdays, and report the ones that
were hit more than once.

This simulates the experiment we ran in class
in which we looked at 40 random birthdays.

Problem 3

An experiment consists of choosing N
people at random and seeing if two
have the same birthday.

Write a program that will ask the user
to input N, and then simulate 10000
experiments. Report the number of
experiments in which two people had
the same birthday.

Consider the following method:

static int FindMax(int[] X)

{

int Max = X[0];

for(int i = 1; i<X.Length; i++)

if(X[i]>Max)

Max = X[i];

return Max;

}

Questions about the method:

� What is its return type?

� How many parameters are there and
what are their types?

� What is the method name?

� What is the method doing?

� Given an array B of integers, how
would you call this method and pass
B to it?

For Example:

int[] B = {4,4,2,3,7,3,2,4,3,8,7,5};

Console.WriteLine(FindMax(B));

We will discuss what is going on with
this call to the method, and describe
how B is being passed to the method.

