What is the Semantic Web?

• The Semantic Web is an extension of the current World Wide Web.

• Content in The Semantic Web is intended to be machine-understandable.

• Currently, the WWW is only human-understandable.
The WWW: What Happened?

• Tim Berners-Lee’s original concept for WWW:
 – Metadata: Data about Data
 – Provide semantic meaning to all documents
 – Software agents could parse document metadata and infer reasoning about document contents.
Existing WWW Content Issues

• Quality:
 • Incorrect Information

• Consistency:
 • Disagreement/Difference of Opinions

• Redundancy & Relevancy:
 • Too much information
Existing WWW Structural Issues

- WWW does not provide underlying structural connection between document data.
- How structured should Semantic Web be?
 - Consider:
 - Relational Database Management Systems: Concepts of Field, Record in Explicit Table Structure.
 - Primary/Foreign Key Pairs connect data among tables.
 - Query of multiple underlying structures presents one unified, non-redundant, relevant result.
 - Is this level of structure really desired?
 - Databases are complex and have a very large overhead.
How Can We Attempt To Resolve These Issues?

– Semantic Web Data: STRICTLY high quality, organized and consistent data is:
 – Not Feasible
 – Not Desired

– Information will have varying degrees of quality and we want to preserve this = the ‘personality’ of the Web.

– Who can we trust to provide Relevant, Consistent and Quality data when we need it?
Idea: Local Consistency

- You understand and can communicate with your neighbors.

- Your neighbors understand and can communicate with their neighbors, etc.

- ‘Recursive access’ to everything on Semantic Web.

- In Practice: P2P Networks: You get information through explicitly chosen neighbors.
Result: ‘Web of Trust’, ie. Combined Trust

- Trust decisions are local.
 - I provide information to those I trust
 - I trust my network of connections.
 - My connections allow me to ‘connect’ to world-wide network of trust.
 - Also connecting centralized information repositories (dictionaries, CiteSeer, etc.)
Idea: Combined Beliefs

- Idea: Users calculate beliefs for any statement reachable through a trust path.
- Users specify what they believe.
- They use ‘Web of Trust’ to estimate their belief in statements supplied by any other user.
- Method: Aggregate the Concatenation of Trusts and Beliefs creating chains of trust and a measure of trust.
‘Web of Trust’

[3]
Result: Web of Trust

- Beliefs may be combined locally yet still maintain global interpretation.

- So, there is a correspondence between Combined Beliefs and Combined Trusts.
“Webs of Trust” in Practice

- Epinions: www.epinions.com:
 - “Unbiased Reviews By Real People” [5]
 - “You can read and write reviews on millions of products and services” [5]
 - Users specify which other users they trust
 - Resulting ‘Web of Trust’ custom-tailors the product reviews seen by each person.
Unbiased reviews by real people

At Epinions, you can read and write reviews on millions of products and services.

Find reviews on:

Search

Find Reviews

Cameras & Photo
Digital Cameras, Film Cameras, Lenses...

Cars & Motorsports
New, Used, Motorcycles, RVs, Tires, Car Stereos...

Computers
Laptops, Desktops, Software, PDAs, Printers...

Electronics
Camcorders, Televisions, DVD, MP3 Players, GPS...

Video Games

Epinions Most Helpful Reviews

Still need wires elsewhere...
Logitech MXâ‚¢ 1000 (931175)

Reviewed by nad_masters

Author's rating: ★★★★★

The power of laser – oh how it amazes us. We know of them through products such as CD and DVD players, as well as supermarket price scanners. But a mouse? It was a natural progression if you think about it. Optical mouses (yes, mouses is the ... Read the full review
Howard Creech's Profile

About Howard Creech
LEAD in Electronics
ADVISE in Home & Garden, Hotels & Travel
POPULAR AUTHOR - Top 10

Member: Howard Creech
Epinions.com ID: Howard Creech
Location: Louisville, KY
Member Since: Aug 16 '99

Favorite Websites:
http://forum.digitalcamerareview.com/member.php?u=70
http://calag.ucop.edu/

more

Howard Creech's Recent Opinions

<table>
<thead>
<tr>
<th>Date Written</th>
<th>Review Title</th>
<th>Product / Topic</th>
<th>Product Rating</th>
<th>Review Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 22 '06</td>
<td>Canon Digital Rebel XT/ EOS 400D and EF-45-55 EF-S II Zoom</td>
<td>Canon Rebel XT/ EOS 400D Digital Camera</td>
<td>★★★★★</td>
<td>Very Helpful</td>
</tr>
<tr>
<td>Aug 01 '05</td>
<td>The Canon Powershot SD600/Digital IXUS 60 digital camera</td>
<td>Canon PowerShot SD600 Digital Camera</td>
<td>★★★☆☆</td>
<td>Very Helpful</td>
</tr>
<tr>
<td>Jul 14 '06</td>
<td>The Sony Cyber-shot DSC H5 How does it compare with the S3, FZ7, and Z612?</td>
<td>Sony Cyber-shot DSC H5 Digital Camera</td>
<td>★★★☆☆</td>
<td>Very Helpful</td>
</tr>
</tbody>
</table>
‘Webs of Trust’ in Practice

• Web Page Ranking:
 – Link Pervasiveness = Measure of Quality:
 • The number and quality of pages linking to a site
 • The number of links on a page
 – Calculate connectivity (sum) between pages.

• Collaborative Filtering: Estimate user belief by considering the beliefs of users with similar interests.
 – Amazon.com Book and Product recommendations
Public Key Cryptography and ‘Webs of Trust’

– Sender A must get Receiver B’s public key in order to send a secret message to B.
– Sender A encrypts message with Receiver B’s public key.
– Receiver B has secret private key in order to decrypt message received from A.
Public Key Cryptography and ‘Webs of Trust’

- How Can A Trust the Key received actually belongs to B? MITM Attack?
- Digital Signature = Trust
- Also: Imagine A verifying B’s public key through a network of trusted users, ie. a Web of Trust.
- This would allow us to Reason and Infer new Relationships About Who We Trust.
Opportunistic Networks

How does The Semantic Web relate?

• Main Oppnets Issue: Linguistic Barriers for communication between devices.
 – WWW Primary Object: A document
 – Oppnet Primary Object: A device

• Need a Language: Trying to create a basis for communication between unrelated, unorganized devices.

• The Language = The Semantic Web
Semantic Web Architecture

- Each layer provides services to layer above.
• **Layer 1: Unicode, URI**
 - **Uniform Resource Identifier:**
 - How to identify a data resource. (think URL)
 - Unique, accessible
 - A different URI used for each data concept in order to distinguish similar but unequal resources (address: mailing box v. street)

• **Layer 2: XML**
 - Tags add structure, metadata.
 - Result is self-descriptive data, but NO semantics.
 - XML Namespaces and Schema: Add URI to elements.
• **Layer 3: RDF**
 - Resource Description Framework: Semantics
 - Defines relationships between tagged data resources.
 - Data Model: (Subject, Predicate, Object) triplets
 - Equivalent to (Resource, Property Type, Value)
 - Subject, Predicate, Object are each URIs themselves.
 - Schema defines relationships
 - RDF Document Example:
 - Dr. Lilien teaches CS 691.
 - The teacher of CS 691 is Dr. Lilien.
 - Equal to us (humans), but not equal to machines.

```xml
<RDF:RDF>
    <DC:Course>CS 691</DC:Course>
    <DC:Teacher>Dr. Lilien</DC:Teacher>
    <DC:School>Western Michigan University</DC:School>
  </RDF:Description>
</RDF:RDF>
```
• **Layer 4: Ontology Vocabulary**
 – Formal Description of Terms, Interrelationships of Terms.
 – Expands on RDF to include more detailed properties, classes.
 – Derive data/classes from already known data/classes. Think: Inheritance
 – Why? To increase number of relationships.

• **Digital Signature (vertical layer):**
 – Added to RDF document to authenticate source
 – Used by Trust Layer
• **Layer 5,6: Logic & Proof:**
 - Use to reason by inference using logic & rules, validate logic via proof.

• **Layer 7: Trust**
 - Uses Digital Signature
 - Can we trust this subject, property, or value object identified by this URI?
 - Imagine the ‘Webs of Trust’ that could be established with objects at this level of granularity!!!
Opportunistic Networks

How does The Semantic Web relate?

- Each device has services to contribute to the network.

- The Semantic Web gives us a ‘bridge’, ie. a common language, between devices. Think: third party ‘Interpreter’

- With each node locally defining its own level of trust, trusted neighbors can be identified (using the Semantic Web architecture’s built-in trust via Digital Signatures).

- And the ‘Web of Trust’ can propagate into a larger network of devices with services to offer.
References

