CS 6910-ACIS
Wormhole attack effects in various routing protocols
Yih Chun Hu, Andrian Perrig
Carnegie Mellon University
David B Johnson-Rice University
Presented by- Akshitha Guduru

Department of Computer Science
Western Michigan University
Instructor: Prof. Leszek T. Lilien, Fall 2006
Wormhole attack

- A malicious node records control and data transfer at one location and tunnels it to a colluding node, which replays it locally.

- Possible even if attacker has not compromised any hosts
Effects in various routing protocols

- DSR - prevents any routes apart from wormhole to be discovered
- Routing protocol fails to find routes in:
 - TBRPF - Topology broadcast based on Reverse path forwarding
 - OLSR - Optimized link state routing
Assumptions

- Bi-directional links
- Wireless network may drop, corrupt, duplicate or re-order packets
- Nodes in ad-hoc network may be resource constrained
- Node can obtain an authenticated key for any other node
What is packet leash?

A mechanism to detect and defend against wormhole attacks

Leash is any information added to a packet designed to restrict packets maximum allowed transmission distance.
Types of packet leashes

- Geographical Leashes: Ensures that the recipient of the packet is within a certain distance from sender

- Temporal Leashes: Ensures that packet has an upper bound on its lifetime, restricting the maximum travel distance
Constructing geographical leash

- Geographical leash: Each node must know its own location
- All nodes must have loosely synchronized clocks
- RSA authentication can be used to allow a receiver to authenticate the location and timestamp
Explanation for geographical leash

- Sender node includes its own location p_s and the time at which the packet is sent t_s.
- The receiving node compares this with its location p_r and the time when it received the packet t_r.
- If the clocks are synchronized to a difference of ‘D’ and ‘v’ is an upper bound on the velocity of any node, the receiver can compute the distance d_{sr}.
Constructing temporal leash

- Tightly synchronized clocks such that maximum difference is d
- Value of ‘d’ is known by all known nodes
- Includes expiration time for each node
Explanation for temporal leash

- Sender includes time at which it sent the packet t_s
- The receiver node compares this value to the time at which it received the packet t_r
- Receiver can detect if the packet traveled too far based on the transmission distance
- Sender can also set an expiration time t_e after which the receiver should not accept the packet.
What is TIK?

- TIK stands for TESLA (Timed efficient stream loss-tolerant authentication) with Instant key disclosure.
- Provides instant authentication and broadcast communication for temporal leashes in ad-hoc networks.
- Novel observation that a receiver can verify TESLA security condition
Temporal leash with TIK protocol

- We use a hash tree structure for more efficient authentication of values.
- To authenticate a sequence of values v_0, v_1, \ldots, v_n, these values are placed at leaf nodes of a binary tree.
- First the values are binded using a one way hash function $v_i' = H(v_i)$.
Merkle hash tree

Diagram:
- m_p
- m_l
- m_r
- a_1
- b_1
- c_1
- d_1
- m_1
- m_2
- m_3
- m_4
Derivation of tree values

- Let parent node be m_p and its child nodes be m_l and m_r

 $$m_r|m_p = H(m_l|m_r)$$

- Levels of the tree are computed recursively from leaf node to root node

- Root value is used to authenticate all leaf values
TIK Protocol Description

- TIK is based on efficient symmetric cryptographic primitives (MAC)
- It is an extension of TESLA broadcast authentication mechanism
- Requires accurate time synchronization between all communicating parties
- Each communicating node should know the public value for each sender node thereby enabling scalable distribution
Stages in TIK

- Sender setup: Sender uses a pseudo random function (PRF)
 - F is the PRF and M is the master key
- Set of keys are derived say k_0, \ldots, k_i where $K_i = F_M(i)$
- Sender can efficiently access the keys in any order
- It is intractable for attacker to find the master key even if all key values are known
Continued...

- Receiver bootstrapping:
 we assume that all nodes have synchronized clocks
 Each receiver knows every senders hash tree

- Sending and verifying authenticated packets:
 Sender picks a key that is kept secret when the receiver gets the packet
Security benefits

- Ensures that wormhole attacker is not causing the signal to propagate farther than specified radius

- In geographical leash nodes detect tunneling across obstacles.

- Geographical leash when used in conjunction with digital signatures, can detect a malicious node and spread that information to other nodes.
Application in Oppnets

- A novel method in providing security against wormhole attacks.
- Can provide a means of multi hopping in a Bluetooth environment
- Ability to accurately measure location during disaster
Conclusions

- Wormhole can have devastating consequences on many proposed routing protocols
- TIK has computational and memory requirements that are satisfiable today
- Message authentication codes using TIK efficiently protects against spoofing, eavesdropping, wormhole attacks and ensures lot of freshness
- Implementable with current technologies
Packet leashes—A defense against wormhole attacks in wireless adhoc networks—
Yi Chun Hu, Adrian Perrig – Carnegie Mellon University
David.B.Johnson -Rice university