Errata Sheet for
8th Edition of
Introduction to Mathematical Statistics
R.V. Hogg, J.W. McKean, A.T. Craig

Many of these errors and typos were e-mailed to me by readers of HMC. THANKS!!!
Please send errors and typos to mckean@wmich.edu or via snail mail at

Dr. Joe McKean
Department of Statistics
Western Michigan University
Kalamazoo, MI 49008-5278

1. Page 9, line 6, limits of integration for \(Q[(5, \infty)] \) are 5 and \(\infty \).

2. Page 9, line 13, replace \(1 = 3, 4, \ldots \) with \(i = 2, 3, \ldots \).

3. Page 52, last line, should read:

\[
F(x) = 1 - (1 + 5e^x)^{-2} \quad -\infty < x < \infty.
\]

4. Page 63, the last line in the display is:

\[
e^{\sum_{y=0}^{\infty} \left(\frac{1}{2}e^{-1} \right)^{y+1}} = \frac{1}{2} \frac{1}{1 - (1/2)e^{-1}} = \frac{e}{2e - 1}.
\]

5. Page 100, line -3, last line of equation is

\[
e^{-\mu_1} \sum_{x_1=1}^{\infty} \frac{\mu_1^{x_1-1}}{(x_1-1)!} \cdot 1 = \mu_1.
\]

6. Page 161, line 2 and line 6, replace \(p_{k-1} \) with \(p_k \).

7. Page 190, line 2, lower limit of integral is \(-\infty \).

8. Page 210, Part (d) of Exercise 3.5.21: Not \((1/2)X \) but \(2X \).

9. Page 223, Exercise 3.7.4, replace \(\alpha = \beta = 2 \) with \(\alpha_1 = \beta_1, \alpha_2 = \beta_2 = 2 \).

10. Page 224, Exercise 3.7.10, the bounds on \(k \) are \(-\tau < k < \alpha \tau \).
11. Page 224, Exercise 3.7.11. The parameter λ for the random variable θ should be $\beta = 1/h$ and the unconditional pdf of X is

$$\frac{\Gamma(\alpha + k)\Gamma(x + h)\Gamma(\alpha + h)\Gamma(x + k)}{\Gamma(\alpha)\Gamma(k)\Gamma(h)\Gamma(\alpha + h + x + k)x!}, \quad x = 0, 1, 2, \ldots.$$

12. Page 224, Exercise 3.7.12, since $\alpha > 0$, for the geometric pmf use

$$g(\alpha) = p(1 - p)^{\alpha - 1}, \quad \alpha = 1, 2, 3, \ldots.$$

13. Page 229, line 11, replace $[n/(n - 1)]\sigma^2$ with $[(n - 1)/n]\sigma^2$.

14. Page 370, line 2, replace $1 - \frac{2}{n}$ with $1 - \epsilon$.

15. Page 682, In the second row of the table of results, replace $\hat{\delta}$ with $\hat{\tau}$.

16. Page 722, in the answer to Exercise 1.7.20, replace $5 + y$ with $1 + 5y$.

17. Page 727, answer for Exercise 6.3.17 is 0.0086 not 0.0172.