Lexical Analysis
part II

Chapter 3
Finite Automata

• Regular expressions = specification
• Finite automata = implementation

• A finite automaton consists of
 – An input alphabet \(\Sigma \)
 – A set of states \(S \)
 – A start state \(n \)
 – A set of accepting states \(F \subseteq S \)
 – A set of transitions \(\text{state} \rightarrow \text{input state} \)
Finite Automata

• Transition

\[s_1 \xrightarrow{a} s_2 \]

• Is read

In state \(s_1 \) on input “a” go to state \(s_2 \)

• If end of input (or no transition possible)
 – If in accepting state \(\Rightarrow \) accept
 – Otherwise \(\Rightarrow \) reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

• A finite automaton accepting any number of 1’s followed by a single 0
• Alphabet: \{0,1\}
And Another Example

- Alphabet \{0,1\}
- What language does this recognize?
And Another Example

- Alphabet still \{ 0, 1 \}

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

• Another kind of transition: ε-moves

• Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
 – One transition per input per state
 – No ε-moves

• Nondeterministic Finite Automata (NFA)
 – Can have multiple transitions for one input in a given state
 – Can have ε-moves
Execution of Finite Automata

• A DFA can take only one path through the state graph
 – Completely determined by input

• NFAs can choose
 – Whether to make ε-moves
 – Which of multiple transitions for a single input to take
Acceptance of NFAs

• An NFA can get into multiple states

• Input: 1 0 1

• Rule: NFA accepts if it can get in a final state
NFA vs. DFA (1)

• NFAs and DFAs recognize the same set of languages (regular languages)

• DFAs are easier to implement
 – There are no choices to consider
NFA vs. DFA (2)

• For a given language the NFA can be simpler than the DFA

• DFA can be exponentially larger than NFA
Regular Expressions to Finite Automata

• High-level sketch

- Regular expressions
 - NFA
 - DFA
 - Lexical Specification
 - Table-driven Implementation of DFA
Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
 — Notation: NFA for rexp A
• Decomposite rexp into sub-rexp.

- For ε

- For input a
Regular Expressions to NFA (2)

- For AB

- For $A \mid B$
Regular Expressions to NFA (3)

• For A^*

• For (A): same as A
Example of RegExp -> NFA conversion

• Consider the regular expression

\[(1 \mid 0)^*1\]

• The NFA is
Basic ideas of remove nondeterminism

- Two cases of non-determinism:
 - Epsilon transition
 - Remove the edge by merging the two states
 - Exiting from one state there are multiple edges with same labels.
 - Merge the states that can be reached from the same symbol;
NFA to DFA. The Trick

• Simulate the NFA

• Each state of DFA
 = a non-empty subset of states of the NFA

• Start state
 = the set of NFA states reachable through ε-moves from NFA start state

• Add a transition $S \xrightarrow{a} S'$ to DFA iff
 – S' is the set of NFA states reachable from the states in S after seeing the input a
 • considering ε-moves as well
Formalize the ideas

• Two key functions
 - ε-closure(T) is set of states reachable by ε from s_i in T;
 - Move(T,a) is set of states reachable by a from s_i in T.

• The algorithm
 - Start state derived from s_0 of the NFA
 - Take its ε-closure
 - Work outward, trying each $\alpha \in \Sigma$ and taking its ε-closure
 - Each state in DFA corresponds to a subset of states of the NFA;
 - That is why it is called subset construction;
 - Iterative algorithm that halts when the states wrap back on themselves.
ε-closure

• Definition: \(\varepsilon \)-closure(T) = T + all NFA states reachable from any state in T using only \(\varepsilon \) transitions.

• Example:

\[\varepsilon \text{-closure}\{1,2,5\} = \{1,2,5\} \]
\[\varepsilon \text{-closure}\{4\} = \{1,4\} \]
\[\varepsilon \text{-closure}\{3\} = \{1,3,4\} \]
\[\varepsilon \text{-closure}\{3,5\} = \{1,3,4,5\} \]
NFA to DFA. Algorithm(I)

• A transition table D_{tran} for D is constructed as follows:

 initially, ε-closure(s_0) is the only state in D_{states} and it’s unmarked;

 while there is an unmarked state in T in D_{states} do begin
 mark T;
 for each input symbol a do begin
 $U := \varepsilon$-closure(move(T, a));
 if U is not in D_{states} then
 add U as an unmarked state to D_{states};
 $D_{tran}[T,a] := U$
 end
 end

NFA to DFA. Algorithm(II)

- Computation of ε-closure(T) :

 push all states in T onto stack;
 initialize ε-closure(T) to T;
 while stack is not empty do begin
 pop t, the top element, off of stack;
 for each state u with an edge from t to u labelled ε do begin
 if u is not in ε-closure(T) then
 add u to ε-closure(T); push u onto stack;
 end
 end
NFA -> DFA Example

Diagram showing the transition from an NFA to a DFA. The NFA has multiple paths and epsilon transitions, while the DFA has a more straightforward transition diagram with clear states and transitions labeled with 0s or 1s.
Implementation

• A DFA can be implemented by a 2D table T
 – One dimension is “states”
 – Other dimension is “input symbols”
 – For every transition $S_i \rightarrow^a S_k$ define $T[i,a] = k$

• DFA “execution”
 – If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 – Very efficient
Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as lex, flex or jlex

• But, DFAs can be huge

• In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Converting DFAs to REs

1. Combine serial links by concatenation
2. Combine parallel links by alternation
3. Remove self-loops by Kleene closure
4. Select a node (other than initial or final) for removal. Replace it with a set of equivalent links whose path expressions correspond to the in and out links
5. Repeat steps 1-4 until the graph consists of a single link between the entry and exit nodes.
Example

1/19/2009

Chapter 3, CS 5810 Spring 2009
Scanner generator: history

• LEX
 – Original for UNIX, it now exists for many operating systems;
 – LEX produces a scanner which is a C program;
 – LEX accepts regular expressions and allows actions (i.e., code to executed) to be associated with each regular expression.

• JLex
 – Lex that generates a scanner written in Java;
 – Itself is also implemented in Java.
```c
#include <stdio.h>

int num_lines = 0, num_chars = 0;
%
%
\n  ++num_lines; ++num_chars;
.
  ++num_chars;
%
%
main()
{
  yylex();
  printf( "# of lines = %d, # of chars = %d \n", num_lines, num_chars );
}
```
{%
#include <stdio.h>
%
%
[0-9]+ {
 /* yytext is a string containing the matched text. */
 printf("Saw an integer: %s\n", yytext);
}
. { /* Ignore all other characters. */ }
%
%
int main(void)
{
 yylex();
 return 0;
}