Intro to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream:
 \[t_1, t_2, t_3, t_4, t_5 \]

- The parse tree is constructed:
 - From the top
 - From left to right

Recursive Descent Parsing

- Consider the grammar:
 \[
 E \rightarrow T + E | T \\
 T \rightarrow (E) | \text{int} | \text{int} \ast T
 \]

- Token stream is: \text{int} \ast \text{int}

- Start with top-level non-terminal \(E \)

- Try the rules for \(E \) in order

Recursive Descent Parsing. Example (Cont.)

- Try \(E \rightarrow T + E \)

- Then try a rule for \(T \rightarrow (E) \)
 - But (does not match input token int

- Try \(T \rightarrow \text{int} \ast T \)
 - This will match but + after T will be unmatched

- Have exhausted the choices for \(T \)
 - Backtrack to choice for \(E \)

Recursive Descent Parsing. Example (Cont.)

- Try \(E \rightarrow T \)

- Follow same steps as before for \(T \)
 - And succeed with \(T \rightarrow \text{int} \ast T \) and \(T \rightarrow \text{int} \)
 - With the following parse tree

Recursive Descent Parsing. Notes.

- Easy to implement by hand
 - An example implementation is provided as a supplement “Recursive Descent Parsing”
Recursive-Descent Parsing

- Parsing: given a string of tokens $t_1 t_2 ... t_n$, find its parse tree
- Recursive-descent parsing: Try all the productions exhaustively
 - At a given moment the fringe of the parse tree is: $t_1 t_2 ... t_k A ...
 - Try all the productions for A: if $A \rightarrow BC$ is a production, the new fringe is $t_1 t_2 ... t_k B C ...
 - Backtrack when the fringe doesn't match the string
 - Stop when there are no more non-terminals

When Recursive Descent Does Not Work

- But does not always work...
 - Consider a production $S \rightarrow S \alpha$:
 - In the process of parsing S we try the above rule
 - What goes wrong?
 - A left-recursive grammar has a non-terminal S $S \rightarrow^* S \alpha$ for some α
 - Recursive descent does not work in such cases
 - It goes into a dead loop

Elimination of Left Recursion

- Consider the left-recursive grammar
 $$S \rightarrow S \alpha \mid \beta$$
 - S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion
 $$S \rightarrow \beta S'$$
 $$S' \rightarrow \alpha S' \mid \varepsilon$$

Elimination of Left-Recursion. Example

- Consider the grammar
 $$S \rightarrow 1 \mid S \ 0 \quad (\beta = 1 \text{ and } \alpha = 0)$$
 can be rewritten as
 $$S \rightarrow 1 S'$$
 $$S' \rightarrow 0 S' \mid \varepsilon$$

More Elimination of Left-Recursion

- In general
 $$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$
 - All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as
 $$S \rightarrow \beta_1 S' \mid ... \mid \beta_m S'$$
 $$S' \rightarrow \alpha_1 S' \mid ... \mid \alpha_n S' \mid \varepsilon$$

General Left Recursion

- The grammar
 $$S \rightarrow A \alpha \mid \delta$$
 $$A \rightarrow S \beta$$
 is also left-recursive because
 $$S \rightarrow^* S \beta \alpha$$
- This left-recursion can also be eliminated
- See book, Section 4.3 for general algorithm
Summary of Recursive Descent

• Simple and general parsing strategy
 – Left-recursion must be eliminated first
 – ... but that can be done automatically
• Unpopular because of backtracking
 – Thought to be too inefficient
• In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

• Like recursive-descent but parser can “predict” which production to use
 – By looking at the next few tokens
 – No backtracking
• Predictive parsers accept LL(k) grammars
 – L means “left-to-right” scan of input
 – L means “leftmost derivation”
 – k means “predict based on k tokens of lookahead”
• In practice, LL(1) is used

LL(1) Languages

• In recursive-descent, for each non-terminal and input token there may be a choice of production
• LL(1) means that for each non-terminal and token there is only one production that could lead to success
• Can be specified as a 2D table
 – One dimension for current non-terminal to expand
 – One dimension for next token
 – A table entry contains one production

Predictive Parsing and Left Factoring

• Recall the grammar
 \[
 \begin{align*}
 E & \rightarrow T + E | T \\
 T & \rightarrow \text{int} | \text{int} \ast T | (E)
 \end{align*}
 \]
• Impossible to predict because
 – For T two productions start with int
 – For E it is not clear how to predict
• A grammar must be left-factored before use for predictive parsing

Left Factoring Rule

• If a production
 \[
 A \rightarrow \alpha \beta_1 \beta_2 ... \beta_n | \gamma
 \]
Then
\[
 A \rightarrow \alpha A' | \gamma

 A' \rightarrow \beta_1 \beta_2 ... \beta_n
 \]

Left-Factoring Example

• Recall the grammar
 \[
 \begin{align*}
 E & \rightarrow T + E | T \\
 T & \rightarrow \text{int} | \text{int} \ast T | (E)
 \end{align*}
 \]
• Factor out common prefixes of productions
 \[
 \begin{align*}
 E & \rightarrow TX \\
 X & \rightarrow +E | \epsilon \\
 T & \rightarrow (E) | \text{int} Y \\
 Y & \rightarrow \ast T | \epsilon
 \end{align*}
 \]
LL(1) Parsing Table Example

- **Left-factored grammar**

 \[
 \begin{align*}
 E &\rightarrow TX \\
 T &\rightarrow (E) \mid \text{int} Y \\
 X &\rightarrow + E \mid \varepsilon \\
 Y &\rightarrow * T \mid \varepsilon
 \end{align*}
 \]

- **The LL(1) parsing table:**

<table>
<thead>
<tr>
<th></th>
<th>int</th>
<th>*</th>
<th>()</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>int</td>
<td>*</td>
<td>()</td>
<td>$</td>
</tr>
<tr>
<td>E</td>
<td>T X</td>
<td>*E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>X</td>
<td>* T</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Y</td>
<td>* T</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

LL(1) Parsing Table Example (Cont.)

- Consider the \([E, \text{int}]\) entry

 - "When current non-terminal is \(E\) and next input is \(\text{int}\), use production \(E \rightarrow \ T \ X\)

 - This production can generate an \(\text{int}\) in the first place

- Consider the \([Y, +]\) entry

 - "When current non-terminal is \(Y\) and current token is \(+\), get rid of \(Y\"

 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations

 - Consider the \([E, \ast]\) entry

 - "There is no way to derive a string starting with \(\ast\) from non-terminal \(E\"

Using Parsing Tables

- Method similar to recursive descent, except

 - For each non-terminal \(S\)

 - We look at the next token \(a\)

 - And choose the production shown at \([S, a]\)

- We use a stack to keep track of pending non-terminals

- We reject when we encounter an error state

- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

Initialize stack = \(<S \>$ and next (pointer to tokens)

Repeat

Case stack of

- \(<X, \text{rest}>\) if \(T[X, \ast \text{next}] = Y_1...Y_n\)

 Then stack \(\leftarrow <Y_1...Y_n, \text{rest}>\); else error ()

- \(<t, \text{rest}>\) if \(t = \ast \text{next} ++\)

 Then stack \(\leftarrow <\text{rest}>\); else error ()

Until stack == < >

LL(1) Parsing Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E $</td>
<td>int * int $</td>
<td>T X</td>
</tr>
<tr>
<td>T X $</td>
<td>int * int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int * int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>* int $</td>
<td>* T</td>
</tr>
<tr>
<td>* T X $</td>
<td>* int $</td>
<td>terminal</td>
</tr>
<tr>
<td>T X $</td>
<td>int $</td>
<td>int Y</td>
</tr>
<tr>
<td>int Y X $</td>
<td>int $</td>
<td>terminal</td>
</tr>
<tr>
<td>Y X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>X $</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from CFG

Top-Down Parsing. Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

 ![Tree Diagram]

 \[\text{int} \ast \text{int} + \text{int}\]

- The leaves at any point form a string \(\beta \bar{A} \gamma \)
 - \(\beta \) contains only terminals
 - The input string is \(\beta \bar{A} \gamma \)
 - The prefix \(\beta \) matches
 - The next token is \(\beta \)

Predictive Parsing. Review

- A predictive parser is described by a table
 - For each non-terminal \(A \) and for each token \(b \) we specify a production \(A \rightarrow \alpha \)
 - When trying to expand \(A \) we use \(A \rightarrow \alpha \) if \(b \) is the next token and \(A \) the Non-terminal to be expanded.

- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary
Constructing Predictive Parsing Tables

• Consider the state $S \rightarrow \gamma \beta A\gamma$
 – With β the next token
 – Trying to match $\beta b\delta$

There are two possibilities:

1. b belongs to an expansion of A
 • Any $A \rightarrow \alpha$ can be used if b can start a string derived from α
 In this case we say that $b \in \text{First}(\alpha)$

Or...

Computing First Sets

Definition $\text{First}(X) = \{ b \mid X \rightarrow^* b \alpha \} \cup \{ e \mid X \rightarrow^* e \}$

1. $\text{First}(b) = \{ b \}$

2. For all productions $X \rightarrow A_1 \ldots A_n$
 • Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{First}(X)$, stop if $e \notin \text{First}(A_i)$
 • Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{First}(X)$, stop if $e \notin \text{First}(A_i)$
 • ... Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{First}(X)$, stop if $e \notin \text{First}(A_i)$
 • Add ϵ to $\text{First}(X)$

Constructing Predictive Parsing Tables (Cont.)

2. b does not belong to an expansion of A
 – The expansion of A is empty and b belongs to an expansion of γ
 – Means that b can appear after A in a derivation of the form $S \rightarrow \gamma \beta A\gamma$
 – We say that $b \in \text{Follow}(A)$ in this case

• What productions can we use in this case?
 • Any $A \rightarrow \alpha$ can be used if α can expand to e
 • We say that $\epsilon \in \text{First}(A)$ in this case

First Sets. Example

• Recall the grammar

 \begin{align*}
 E & \rightarrow TX \\
 T & \rightarrow (E) | \text{int } Y \\
 X & \rightarrow + E | \epsilon \\
 Y & \rightarrow * T | \epsilon
 \end{align*}

• First sets

 \[
 \begin{align*}
 \text{First}(\) &= \{ \} \\
 \text{First}(T) &= \{ \text{int }, \} \\
 \text{First}(\) &= \{ \} \\
 \text{First}(E) &= \{ \text{int }, \} \\
 \text{First}(\text{int}) &= \{ \text{int } \} \\
 \text{First}(X) &= \{ *, \epsilon \} \\
 \text{First}(+) &= \{ + \} \\
 \text{First}(Y) &= \{ *, \epsilon \} \\
 \text{First}(*) &= \{ * \}
 \end{align*}
 \]

Computing Follow Sets

Definition $\text{Follow}(X) = \{ b \mid S \rightarrow \gamma \beta X \beta \delta \}$

1. Compute the First sets for all non-terminals first
2. Add ϵ to $\text{Follow}(S)$ if S is the start non-terminal
3. For all productions $Y \rightarrow \ldots X A_1 \ldots A_n$
 • Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{Follow}(X)$, stop if $e \notin \text{First}(A_i)$
 • Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{Follow}(X)$, stop if $e \notin \text{First}(A_i)$
 • ... Add $\text{First}(A_i) - \{ \epsilon \}$ to $\text{Follow}(X)$, stop if $e \notin \text{First}(A_i)$
 • Add $\text{Follow}(Y)$ to $\text{Follow}(X)$

Follow Sets. Example

• Recall the grammar

 \begin{align*}
 E & \rightarrow TX \\
 T & \rightarrow (E) | \text{int } Y \\
 X & \rightarrow + E | \epsilon \\
 Y & \rightarrow * T | \epsilon
 \end{align*}

• Follow sets

 \[
 \begin{align*}
 \text{Follow}(\) &= \{ \text{int }, \} \\
 \text{Follow}(\) &= \{ \text{int }, \} \\
 \text{Follow}(T) &= \{ \epsilon, \} \\
 \text{Follow}(\text{int}) &= \{ \epsilon, \} \\
 \text{Follow}(\text{int}) &= \{ \epsilon, \} \\
 \text{Follow}(X) &= \{ \text{int }, \} \\
 \text{Follow}(Y) &= \{ \text{int }, \}
 \end{align*}
 \]
Constructing LL(1) Parsing Tables

- Construct a parsing table \(T \) for CFG \(G \)
- For each production \(A \rightarrow \alpha \) in \(G \) do:
 - For each terminal \(b \in \text{First}(\alpha) \) do
 - \(T[A, b] = \alpha \)
 - If \(\alpha \rightarrow \epsilon \) and \(b \in \text{Follow}(A) \) do
 - \(T[A, b] = \alpha \)

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then \(G \) is not LL(1)
 - If \(G \) is ambiguous
 - If \(G \) is left recursive
 - If \(G \) is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing
- Next: a more powerful parsing strategy

Exercise

- Consider the following grammar:
 - \(A \rightarrow BCD \)
 - \(B \rightarrow h B \mid \epsilon \)
 - \(C \rightarrow C g \mid g \mid C h \mid i \)
 - \(D \rightarrow AB \mid \epsilon \)
- 1. compute first and follow sets
- 2. give LL(1) parsing table
- 3. show the action of the LL(1) parser on input string "hhighh"