A Simple Code Generator

• Generate code for a single basic block
• How to use registers?
 – In most machine architectures, some or all of the operands must be in registers
 – Registers make good temporaries
 – Hold values that are computed in one basic block and used in other blocks
 – Often used with run-time storage management

Register and Address Descriptors

• For each available register, a register descriptor (RD) keeps track of the vars whose current value in that register
 – Initially empty
• For each var, an address descriptor (AD) keeps track of the locations where the current value of the var can be found
 – Location can be a register, a memory address, etc.

Managing Register and Address Descriptors

• For LD R, x
 – Change RD for R so it holds only x
 – Change AD for x by adding R as an additional location
• For ST x, R
 – Change AD for x to include its own memory location
• For ADD R, R, R
 – Change RD for R so it holds only x
 – Change AD for x so its only location is R
 – Remove R from the AD of any var other than x

Example

\[
\begin{align*}
 t &= a - b \\
 u &= a - c \\
 v &= t + u \\
 a &= d \\
 d &= v + u
\end{align*}
\]

• t, u, v are temp vars, while a, b, c, d are global
• Assume registers are enough
 – Reuse registers whenever possible
Example

Example

```
R1 R2 R3 a b c d t u v

LD R1, a; LD R2, b; SUB R2, R1, R2

R1 R2 R3 a b c d t u v

a b

LD R3, c; SUB R1, R1, R2

R1 R2 R3 a b c d t u v

c d

ADD R3, R2, R1

v = t + u

R1 R2 R3 a b c d t u v

u t v

LD R2, d

R1 R2 R3 a b c d t u v

d
```

Function getReg

- Consider picking R_y for y in $x = y + z$
 - If y in a register, do nothing
 - If y not in a register and there is a empty one, choose it as R_y
 - Let v be one of the var in R
 - We are OK if v is somewhere besides R
 - We are OK if v is x
 - We are OK if v is not used later
 - Spill: ST v, R

Peephole Optimization

- Exam a sliding window and replace instruction sequence with a shorter or faster sequence
 - Redundant-instruction elimination
 - Flow-of-control optimization
 - Algebraic simplifications
 - Use a machine idioms

Eliminating Redundant Loads and Stores

```
LD a, R0
ST R0, a
```
Eliminating Unreachable Code

if debug==1 goto L1
goto L2
L1: print debugging info
L2:

if debug!=1 goto L2
L1: print debugging info
L2:

Flow-of-Control Optimizations

goto L1
...
L1: goto L2

goto L2
...
L1: goto L2

L1:
...
if a < b goto L1
...
L1: goto L2

L2:
...
if a < b goto L2
...
L1: goto L2

Register Allocation and Assignment

• Usage Counts
 – An approximate formula for the benefit from allocating a register for x
 \[\sum_{\text{blocks in } B} \text{use}(x, B) + 2 \times \text{live}(x, B) \]
 – use(x,B) is the number of times x is used in B prior to any definition of x
 – live(x,B) is 1 if x is live on exit from B and is assigned a value in B, 0 otherwise

Instruction Selection by Tree Rewriting

• Instruction selection can be a large combinational task
 – Even the evaluation order is given and register allocation has been done

Example

Instruction Selection by Tree Rewriting

• Instruction selection can be a large combinational task
 – Even the evaluation order is given and register allocation has been done

Tree-Translation Schemes

LD R0, #a
ADD R0, R0, SP
ADD R0, R0, i(SP)
LD R1, b
INC R1
ST *R0, R1
Optimal Code Generation for Expressions

- We can choose registers optimally
 - If a basic block consists of a single expression, or
 - It is sufficient to generate code for a block one expression at a time

Ershov Numbers

- Assign the nodes of an expression tree a number that tells how many registers needed
 - Label leaf 1
 - The label of an interior node with one child is the label of its child
 - The label of an interior node with two children
 - the larger one if the labels are different
 - One plus the label if the labels are the same

Generating Code From Labeled Expression Tree

- Recursive algorithm starting at the root
 - Label k means k registers will be used
 - \(R_{b+1}, R_{b+2}, \ldots, R_{b+k} \), where \(b>1 \) is a base

Ershov Numbers

- For a leaf \(x \), if base is \(b \) generate LD \(R_{b+1}, x \)

Ershov Numbers

- \((a-b)+e*(c+d)\)

Ershov Numbers

- \(t1 = a - b \)
- \(t2 = c + d \)
- \(t3 = e \cdot t2 \)
- \(t4 = t1 + t3 \)
Insufficient Supply of Registers

- Input: a labeled tree and a number r of registers
- For a node N with at least one child labeled r or greater
 - recursively generate code for the big child with $b=1$.
 The result will appear in R_i
 - Generate machine instruction `ST t_k, R_i`
 - If the little child has label r or greater, $b=1$. If the label is $j<r$, then $b=r-j$. The result in R_i
 - Generate the instruction `LD R_{i-1}, t_k`
 - Generate OP R_i, R_{i-1} or OP R_i, R_{i-1}, R_i