CS6610: Software Engineering II

Lecture 2: Sets and Relations
This Lecture...

- reviews the concepts of sets and relations required for Alloy.
- focuses on the forms of set operation and definitions used in specifications.
Set

- Collection of distinct objects
- Each set’s objects are drawn from a larger *domain* of objects all of which have the same type --- sets are homogeneous
- Examples:

 - \{2, 4, 5, 6, \ldots\}
 - \{red, yellow, blue\}
 - \{true, false\}
 - \{red, true, 2\}

 set of integers
 set of colors
 set of boolean values
 for us, not a set!
Value of a Set

- Is its membership
- Two sets A and B are equal if
 - every member of A is a member of B
 - every member of B is a member of A
- $x \in S$ denotes "x is a member of S"
Defining Sets

- We can define a set by *enumeration*
 - PrimaryColors == \{red, yellow, blue\}
 - Boolean == \{true,false\}
 - Evens == \{..., -4, -2, 0, 2, 4, ...\}

- This works fine for finite sets, but
 - what do we mean by “...”?
 - remember we want to be precise
Defining Sets

- We can define a set by *comprehension*, that is, by describing a property that its elements must share.

Notation:
- \{ x : S | P(x) \}
- Form a new set of elements drawn from set/domain \(S \) including exactly the elements that satisfy predicate (i.e., boolean function) \(P \).

Examples:
- \{ x : N | x < 10 \} \quad \textit{Naturals less than 10}
- \{ x : Z | (\exists y : Z | x = 2y) \} \quad \textit{Even integers}
- \{ x : N | \text{false} \} \quad \textit{Empty set of natural numbers}
Cardinality

- **Cardinality** is the size of a set
- Examples:
 - # \{red,yellow,blue\} = 3
 - # \{1,2,2\} = 2
 - # \text{Z}
- Don’t worry about infinite sets too much. We’ll be using them in a very practical way
Set Operations

- **Union:**
 - $X \cup Y \equiv \{e \mid e \in X \lor e \in Y\}$
 - $\{\text{red}\} \cup \{\text{blue}\} = \{\text{red, blue}\}$

- **Intersection**
 - $X \cap Y \equiv \{e \mid e \in X \land e \in Y\}$
 - $\{\text{red, blue}\} \cap \{\text{blue, yellow}\} = \{\text{blue}\}$

- **Difference**
 - $X \setminus Y \equiv \{e \mid e \in X \land e \notin Y\}$
 - $\{\text{red, yellow, blue}\} \setminus \{\text{blue, yellow}\} = \{\text{red}\}$
Subsets

- A **subset** holds elements drawn from another set
 - \(X \subseteq Y \equiv (\forall e \mid e \in X \rightarrow e \in Y) \)
 - \(\{1,7,17,23\} \subseteq \mathbb{Z} \)
- A **proper subset** is a non-equal subset
- Another view of equality
 - \(A = B \equiv (A \subseteq B \land B \subseteq A) \)
Power Sets

- The power set of set S (denoted $\mathcal{P}(S)$) is the set of all subsets of S, i.e.,

$$\mathcal{P}(S) \equiv \{ e \mid e \subseteq S \}$$

- Example:
 - $\mathcal{P}({a,b,c}) = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\} \}$

Note: for any S, $\emptyset \subseteq S$ and thus $\emptyset \in \mathcal{P}(S)$
For you to do

- Specifying using comprehension notation
 - Odd positive integers
 - The squares of integers, i.e, \{1, 4, 9, 16, \ldots\}
Set Partitioning

- Sets are *disjoint* if they share no elements.
- Often when modeling, we will take some set S and divide its members into disjoint subsets called *partitions*.
- Each member of S belongs to exactly one partition.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soup</td>
<td>Chips & Salsa</td>
<td></td>
</tr>
<tr>
<td>Steak</td>
<td>Pizza</td>
<td>Sweet&Sour Pork</td>
</tr>
<tr>
<td>Cake</td>
<td>Apple pie</td>
<td>Ice Cream</td>
</tr>
</tbody>
</table>
Model residential scenarios

- Basic domains: *Persons*, *Residences*
- Partitions:
 - Partition *Persons* into *Child*, *Student*, *Adult*
 - Partition *Residences* into *Home*, *DormRoom*, *Apartment*, *Shelter*
For you to do

- Express the following properties of pairs of sets
 - Two sets A, B are disjoint
 - Two sets A, B form a partitioning of a third set C
Acknowledgements

- A significant portion of these slides are adapted from Matt Dwyer, John Hatcliff, and Rod Howell's slides of the course software specification