CS6610: Software Engineering II

Lecture 7: Temporal Logic
Safety Property

- Safety property
 - “Something bad must not happen”
 - E.g.: System should not crash
 - E.g.: Mutual exclusive use of a shared resource
 - Error trace is finite
Liveness Property

- Liveness property
 - “Something good must happen”
 - E.g.: Every packet sent must be received at its destination
 - E.g.: A bus resource allocator will eventually grant the use of the bus
 - Error trace is infinite
Propositional Logic

- Used to reason about static situations
- Formulas are built using atomic propositions and propositional operators

- Atomic proposition $p \in AP$
- Negation $\neg p$
- Conjunction $p \land q$
- Disjunction $p \lor q$
- Implication $p \rightarrow q$
Problem with Propositional Logic

- Propositional logic is good for describing “static” situations
 - \(P \) holds only in \(s0 \) and \(s1 \)
- How to describe dynamic behaviors such as:
 - Will \(q \) eventually happen?
 - Will \(p \) always happen?
- Dynamic behavior is important for reactive systems
 - Security protocols
 - Hardware
 - Operating systems, ...
Temporal Logic

- Originates from philosophy
- Used to reason about properties with a qualitative notion of time
- Formulas are built using
 - Standard propositional operators such as \(\neg, \land, \lor \)
 - Temporal operators such as
 - always
 - eventually
 - next-time
 - until
Atomic State Properties

- Boolean formula over state variables

\[\text{req} \]

\[\text{req} \land \neg \text{ack} \]
Temporal Operator “Always”

- $G p$: G stands for globally or always p
- $G p$ is true for a path if p holds at all states (points of time) along the path p
Temporal Operator “Eventually”

- Fp stands for eventually p
- Fp is true for a path if p holds at some state (point in time) along the path p
Temporal Operator “Next”

- $X \ p$ stands for next p
- $X \ p$ is true for a path if p holds at the next state (point in time) along the path p
Temporal Operator “Until”

- \(p U q \) stands for \(p \) until \(q \)
- \(p U q \) is true for a path if \(q \) holds at some state along the path, and \(p \) is true in all states before that state
Temporal Operators and Relationships

- The temporal operators G, F, X and U express properties along single computation paths.
- Can you express $G \rho$ purely in terms of F, ρ and propositional operators?
- Can you express $F \rho$ in terms of U and propositional operators?
Examples in Temporal Logic

- “No more than one processor (in a 2-processor system) should have a cache line in write mode”
 - wr1 / wr2 are respectively true if processor 1 / 2 has the line in write mode

- “The grant signal must be asserted at some time after the request signal is asserted”
 - Signals: grant, req

- “A request signal must receive an acknowledge and the request should stay asserted until the acknowledge signal is received”
 - Signals: req, ack
Path Quantifiers in Temporal Logic

- Using the temporal operators so far we can only express properties over a single computation path
 - Linear Temporal Logic (LTL)
- “Path quantifiers” allow us to reason over a tree of possible executions
 - Computation Tree Logic (CTL)
Infinite Computation Tree
Path Quantifiers

- Two additional operators: A (all) and E (exists)
- Corresponding properties hold in states (not paths)
- $A\ p$: Property p holds along all computation paths starting from the state in which $A\ p$ holds
- $E\ p$: Property p holds along at least one path starting from the state in which $E\ p$ holds
Specifying Safety Properties

- $A \ G p$ stands for p holds globally on all paths
- $A \ G p$ is true for a state if property p holds globally along all computation paths starting from the state

Safety property:
Nothing bad will happen
Example: Mutual exclusion
Formula: $AG \neg(p1_lock \land p2_lock)$
p1 and p2 cannot be in the lock state simultaneously.
Specifying Liveness Properties

- $A F p$ stands for p holds eventually on all paths
- $A F p$ is true for a state if property p holds eventually along all computation paths starting from the state

Liveness property:
Something good will happen
Example: resource allocation
Formula: AF bus_grant
(The bus is granted eventually.)
Temporal Logic Examples

- “From any state it is possible to get to the reset state along some path”
 - Signal: reset

- “For any state, it must hold that the grant signal always be asserted some time after the request signal was asserted”
 - Signals: grant, req
Summary: Specifying Properties

Temporal Logic formulas (CTL) =

\[p \in A \mid \]
\[\neg f \mid f \land g \mid f \lor g \mid \]
\[EX f \mid EF f \mid EG f \mid E(f U g) \mid \]
\[AX f \mid AF f \mid AG f \mid A(f U g) \]

Types of Correctness Properties:

- **Safety properties**: nothing bad happens, invariants
 - e.g. no deadlock occurs

- **Liveness properties**: something good happens, progress
 - e.g. every request is eventually acknowledged

- **Precedence properties**: fixed ordering of events
 - e.g. service is done in order of requests received

- **Fairness properties**: assumptions on processes, scheduler
 - e.g. impartiality, justice, strong fairness
Specifying Correctness Properties (Summary)

- Temporal Logic: Useful for reasoning about behavior of an LTS using a qualitative notion of time

- Formulas are formed by using:
 - Standard Boolean operators (and &), or (+), not (!)
 - Temporal operators (always, eventually, next-time, until)

- Formulas are interpreted on sequences/trees over time
 - Linear Temporal Logic (LTL): Infinite sequence is considered, starting from the initial state
 - Computation Tree Logic (CTL): Infinite tree of computations is considered, starting from the initial state