CS6610: Software Engineering II

Symbolic Reachability - I
Implicit Representation

- Implicit representation of transition relation and reachable states
- For propositional or enumerated modules, binary decision diagrams (BDDs) serve as a compact representation
 - BDDs: representation for boolean functions due to Bryant
 - Application to model checking: tool SMV by McMillan
 - Popular in hardware applications
- Symbolic model checking recently won ACM's Theory in Practice award
Symbolic Data Types

- Instead of enumerating states, compute with regions (state-sets) that are represented symbolically
 - Example: \(20 \leq x \leq 99\)
- Note: No enumeration, so number of states in a region is not an issue
Symbolic Search

- Like breadth-first search, guaranteed to terminate if the diameter of the graph is bounded: there is i such that every reachable state is reachable within i transitions from some initial state.
Search Algorithm

Input: a transition graph G, and a region σ^T

Output answer to reachability problem (G, σ^T)

Input G: symgraph; σ^T: symreg
Local σ^R: symreg;

$\sigma^R := \text{InitReg}(G)$;
repeat
 if $\sigma^R \cap \sigma^T \neq \text{EmptySet}$ then
 return Yes;
 if $\text{PostReg}(\sigma^R, G) \subseteq \sigma^R$ then //or $\text{PostReg}(\sigma^R, G) \cup \sigma^R = \sigma^R$
 return No;
 $\sigma^R := \sigma^R \cup \text{PostReg}(\sigma^R, G)$
forever
Symbolic Data Types

- Symbolic regions support following operations
 - ∪: symreg × symreg → symreg
 - ∩: symreg × symreg → symreg
 - =: symreg × symreg → bool
 - ⊆: symreg × symreg → bool
 - EmptySet : symreg

- Symbolic transition graph supports
 - InitReg : symgraph → symreg
 - PostReg : symreg×symgraph → symreg
Symbolic Representation

- Symbolic representation of a transition graph
 - Type of variable \(x \): \(T_x \)
 - Type of state over \(X \): product type \(T_X (\prod_{x \in X} T_x) \)
 - Type of transition: \(T_{X \cup X'} \)
 - Transition relation is, thus, a symbolic region over primed and unprimed variables
 - initial region \(\{ \sigma^I \}_s \) of type symreg\([T_X]\]
 - transition relation \(\{ \rightarrow \}_s \) of type symreg\([T_{X \cup X'}]\]
- We need to decide on how to represent regions and compute PostReg
Computing Post

- **Renaming**
 - \(\text{Rename}(x, y, \sigma) \) returns the renamed region \(\sigma[x := y] \)
 - Extends to variable-sets \(\text{Rename}(X, Y, \sigma) \)

- **Existential quantifier elimination**
 - For \(\sigma \) of type \(\text{symreg}[T_X] \), \(\text{Exists}(x, \sigma) \) returns the region \(\{ s \in \Sigma_{x\setminus\{x\}} \mid (\exists m. s[x := m] \in \sigma) \} \)
 - Extends to variable sets \(\text{Exists}(X, \sigma) \)
Computing Post

- Computing PostReg(\(\sigma\)):
 - conjunct \(\sigma\) with \(\{\rightarrow\}_s\) to obtain the set of transitions originating in \(\sigma\)
 - project the result onto the set \(X'\)
 - rename each primed variable \(x'\) to \(x\)
- \(\text{PostReg}(\sigma, \{G\}_s) = \text{Rename}(X', X, \exists X (X, \sigma \cap \{\rightarrow\}_s))\)
Summary

- To implement symbolic reachability, we need
 - implementation of the data type symreg that supports \cup, \cap, $=$, \subseteq, Rename, and Exists
 - an efficient way to compute, from the module text, the symbolic representation of the initial region $\{\sigma^I\}_s$ and the transition region $\{G\}_s$
Symbolic Search Using Propositional Formulas

- Represent regions by boolean expression
 - Obtaining symbolic representations of σ^I and \rightarrow is easy (no blow-up)
 - Union, intersection easy
 - Renaming: textual substitution
 - Quantifier elimination in linear time:
 - $\exists x, p = (p[x := true] \lor p[x := false])$
Symbolic Search Using Propositional Formulas

- Inclusion (\subseteq) or equivalence ($=$)
 - checking validity of propositional formulas
 - hard: coNP-complete
Can We Improve Formula Representation?

- Propositional formulas not very satisfactory
 - Each step of the computation may be expensive (equality test)
 - More importantly, size of $\text{PostReg}^{\leq i}(q^I)$ may grow with i, with no good heuristics for simplification

- Desirable properties of representation:
 - All operations should be efficient
 - Should maintain compactness whenever possible
 - Representing q^I and q^T from module text should be efficient
Representations of Boolean Functions?

- We often reduce problems to the manipulation of Boolean Functions
 - Truth Tables
 - Disjunctive Normal Form
 - Sum-of-Products
 - Conjunctive Normal Form
 - Product-of-Sums
Truth Table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f ((a,b,c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
DNF and CNF

- $f = abc + ab'c + a'bc$
- $f = (a + b + c) (a + b + c') (a + b' + c) (a' + b + c) (a' + b' + c)$
- $f = (a+b) c$
Review

- How about DNF?
 - $F = ab$
 - $F = abc + abc'$
 - $F = ab' + bc' + ca'$
 - $F = a'b + b'c + c'a$
Ordered Binary Decision Graphs

- Representation for predicates over a set X of boolean variables
- The variables in X are totally ordered
- Paths in the graph encode assignments to variables in X
 - Terminal vertices classify paths into accepting and rejecting
Definition of BDG

- A finite set V of vertices
 - Internal vertices V^I and terminal vertices V^T
 - Root: a root vertex v^I in V
- Labeling: a labeling function that labels each internal vertex with a variable in X, and each terminal vertex with a constant 0 or 1
- Left edges: a function $left : V^I \rightarrow V$
 - If $left(v)$ is an internal vertex then $label(v) < label(left(v))$
 - Right edges similar
Sample BDG

Function: \((x \land y) \lor (x' \land y')\)
- Ordering: \(x < y < x' < y'\)
- On every path from root to a terminal vertex, a variable appears 0 or 1 times
Boolean Function of a BDG

- With vertex v, associate a function $r(v)$
 - if v is terminal then $r(v)$ equals its label (0 or 1)
 - if v is internal then $r(v)$ equals
 \[(-\text{label}(v) \land r(\text{left}(v))) \lor (\text{label}(v) \land r(\text{right}(v))) \]
- BDG B represents the function $r(B) = r(v^I)$
- To check whether a state s satisfies $r(B)$ simply follow path according to values assigned by s
Isomorphism and Equivalence

Two BDGs B and C are isomorphic if the corresponding labeled graphs are isomorphic.
- Deciding isomorphism is easy

Two BDGs B and C are equivalent if the boolean expressions r(B) and r(C) are equivalent.
- Equivalence does not imply isomorphism
- Deciding equivalence is difficult (so this is not what we want for symbolic reachability)
Binary Decision Tree

\[f = (a+b) \cdot c \]
Binary Decision Diagrams

\[f = (a+b) \cdot c \]
Binary Decision Diagrams

\[f = (a+b) \cdot c \]
Binary Decision Diagrams

\[f = (a+b) \cdot c \]
Binary Decision Diagrams

\[f = (a+b) \cdot c \]
Binary Decision Diagrams

Reduced Ordered Binary Decision Diagram
Reduction Rules

- If the two successors of a node v are identical, then remove v.

- If two nodes represent the same function, remove one and share other.
ROBDD

- **Reduced**
 - No more reduction rules can be applied
 - Represent each sub-function only once
 - Remove nodes where both successors are identical

- **Ordered**
 - Same variable ordering on all paths
 - Size of BDD depends on variable ordering
Example: Influence of Variable Ordering

\[f = x_1 x_2 + x_3 x_4 + x_5 x_6 \]

(a) Variable order \(x_1, \ldots, x_6 \)
(b) Variable order \(x_1, x_3, x_5, x_2, x_4, x_6 \)
How do we build a BDD?

- Idea:
 - Given a Boolean Function
 - Generate Decision Tree
 - Apply reduction to obtain BDD

- Bad idea!

- Why?
BDD Operations

- BDDs are compact
- Operations on BDDs are efficient
- How do they work?
BDD_AND

BDD_AND (BDD F, BDD G)
 if (terminal case)
 return (r = trivial result)
 else
 if computed_table_has_entry (F, G, r)
 return r
 else
 x = top_variable (F,G)
 t = BDD_AND (Fx, Gx)
 e = BDD_AND (Fx', Gx')
 if (t==e) return t
 r = find_or_add_unique_table (x, t, e)
 insert_computed_table (F, G, r)
 return r
Run-time Analysis

- Operations are carried out in polynomial time
 - Run-time can be bound by size(F) * size(G)
- Why?
- Idea: Count number of calls to BDD_AND
- Each call is a unique pair of one node from first BDD (F) and one node from second BDD (G)
 - ‘repeats’ are caught by computed table