CS6910: Testing/Verification of Concurrent Programs

Temporal Logic
1996 Turing Award

Safety Property
- Safety property
 - "Something bad must not happen"
 - E.g.: System should not crash
 - E.g.: Mutual exclusive use of a shared resource
 - Error trace is finite

Liveness Property
- Liveness property
 - "Something good must happen"
 - E.g.: Every packet sent must be received at its destination
 - E.g.: A bus resource allocator will eventually grant the use of the bus
 - Error trace is infinite

Propositional Logic
- Used to reason about static situations
- Formulas are built using atomic propositions and propositional operators
 Atomic proposition $p \in AP$
 Negation $\neg p$
 Conjunction $p \land q$
 Disjunction $p \lor q$
 Implication $p \rightarrow q$

Problem with Propositional Logic
- Propositional logic is good for describing "static" situations
- P holds only in s_0 and s_1
- How to describe dynamic behaviors such as:
 - Will q eventually happen?
 - Will p always happen?
 - Dynamic behavior is important
 - Security protocols
 - Hardware/software
 - Operating systems, ...
Temporal Logic
- Originates from philosophy
- Used to reason about properties with a qualitative notion of time
- Formulas are built using
 - Standard propositional operators such as \neg, \land, \lor
 - Temporal operators such as
 - always
 - eventually
 - next-time
 - until

Atomic State Properties
- Boolean formula over state variables

Temporal Operator “Always”
- Gp: G stands for globally or always p
- Gp is true for a path if p holds at all states (points of time) along the path p

Temporal Operator “Eventually”
- Fp: F stands for eventually p
- Fp is true for a path if p holds at some state (point in time) along the path p

Temporal Operator “Next”
- Xp: X stands for next p
- Xp is true for a path if p holds at the next state (point in time) along the path p

Temporal Operator “Until”
- $p U q$: U stands for p until q
- $p U q$ is true for a path if q holds at some state along the path, and p is true in all states before that state
Temporal Operators and Relationships

- The temporal operators G, F, X and U express properties along single computation paths.
- Can you express $G p$ purely in terms of F, p and propositional operators?
- Can you express $F p$ in terms of U and propositional operators?

Examples in Temporal Logic

- "No more than one processor (in a 2-processor system) should have a cache line in write mode"
 - $wr1 \lor wr2$ are respectively true if processor 1 / 2 has the line in write mode
- "The grant signal must be asserted at some time after the request signal is asserted"
 - Signals: grant, req
- "A request signal must receive an acknowledge and the request should stay asserted until the acknowledge signal is received"
 - Signals: req, ack

Path Quantifiers in Temporal Logic

- Using the temporal operators so far we can only express properties over a single computation path
 - Linear Temporal Logic (LTL)
- "Path quantifiers" allow us to reason over a tree of possible executions
 - Computation Tree Logic (CTL)

Infinite Computation Tree

Path Quantifiers

- Two additional operators: A (all) and E (exists)
- Corresponding properties hold in states (not paths)
- $A p$: Property p holds along all computation paths starting from the state in which $A p$ holds
- $E p$: Property p holds along at least one path starting from the state in which $E p$ holds

Specifying Safety Properties

- $A G p$ stands for p holds globally on all paths
- $A G p$ is true for a state if property p holds globally along all computation paths starting from the state

Safety property:
- Example: Mutual exclusion
- $	ext{mutex} \rightarrow (p1_{lock}\land p2_{lock})$
- $p1$ and $p2$ cannot be in the lock simultaneously.
Specifying Liveness Properties

- $A F p$ stands for p holds eventually on all paths
- $A F p$ is true for a state if property p holds eventually along all computation paths starting from the state

Temporal Logic Examples

- “From any state it is possible to get to the reset state along some path”
 - Signal: reset
- “For any state, it must hold that the grant signal always be asserted some time after the request signal was asserted”
 - Signals: grant, req

Summary: Specifying Properties

Temporal Logic: Useful for reasoning about behavior of an LTS using a qualitative notion of time

- Formulas are formed by using:
 - Standard Boolean operators (and & or +, not !)
 - Temporal operators (always, eventually, next-time, until)
- Formulas are interpreted on sequences/trees over time
 - Linear Temporal Logic (LTL): Infinite sequence is considered, starting from the initial state
 - Computation Tree Logic (CTL): Infinite tree of computations is considered, starting from the initial state