CS6910: Testing/Verification of Concurrent Programs

Symbolic Reachability Computation

Implicit Representation
- Implicit representation of transition relation and reachable states
- For propositional or enumerated modules, binary decision diagrams (BDDs) serve as a compact representation
 - BDDs: representation for boolean functions due to Bryant
 - Application to model checking: tool SMV by McMillan
 - Popular in hardware applications

Symbolic Data Types
- Instead of enumerating states, compute with regions (state-sets) that are represented symbolically
 - Example: 20 <= x <= 99
 - Note: No enumeration, so number of states in a region is not an issue

Symbolic Search
- Like breadth-first search, guaranteed to terminate if the diameter of the graph is bounded: there is i such that every reachable state is reachable within i transitions from some initial state

Search Algorithm
- Input: a transition graph G, and a region o'
- Output answer to reachability problem (G, o')
- Input G: symgraph; o': symreg
- Local o": symreg;
- o": = InitReg(G);
- repeat
 - if o" ≠ EmptySet then
 - return Yes;
 - if PostReg(o", G)∩o" then // o" = o" ∪ PostReg(o", G)
 - return No;
- end
- forever

Symbolic Data Types
- Symbolic regions support following operations
 - ∪: symreg × symreg → symreg
 - ∩: symreg × symreg → symreg
 - =: symreg × symreg → bool
 - EmptySet: symreg
- Symbolic transition graph supports
 - InitReg : symgraph → symreg
 - PostReg : symreg × symgraph → symreg
Symbolic Representation

- Symbolic representation of a transition graph
 - Type of variable \(x : T_x \)
 - Type of state over \(X \): product type \(T_x (\Pi_{x \in X} T_x) \)
 - Type of transition: \(T_{X',X} \)
 - Transition relation is, thus, a symbolic region over primed and unprimed variables
 - Initial region \(\{ \sigma \} \), of type symreg\[T_x\]
 - Transition relation \(\{ \rightarrow \} \), of type symreg\[T_{X',X} \]
- We need to decide on how to represent regions and compute PostReg

Computing Post

- Renaming
 - \(Rename(x, y, \sigma) \) returns the renamed region \(\sigma[x := y] \)
 - Extends to variable-sets \(Rename(X, Y, \sigma) \)
- Existential quantifier elimination
 - For \(\sigma \) of type symreg\[T_x\], \(Exists(x, \sigma) \) returns the region \(\{ s \in \Sigma_{X(x)} \mid (\exists m. s[x := m] \in \sigma) \} \)
 - Extends to variable sets \(Exists(X, \sigma) \)

Symbolic Search Using Propositional Formulas

- Represent regions by boolean expression
 - Obtaining symbolic representations of \(\sigma \) and \(\rightarrow \) is easy (no blow-up)
 - Union, intersection easy
 - Renaming: textual substitution
 - Quantifier elimination in linear time:
 - \(Exists(x, p) = (p[x := true] \lor p[x := false]) \)

Summary

- To implement symbolic reachability, we need
 - implementation the data type symreg that supports \(\cup, \cap, =, \subseteq \), Rename, and Exists
 - an efficient way to compute, from the module text, the symbolic representation of the initial region \(\{ \sigma \} \), and the transition relation \(\{ \rightarrow \} \)

Symbolic Search Using Propositional Formulas

- Inclusion \(\subseteq \) or equivalence \(= \)
 - checking validity of propositional formulas
 - hard: coNP-complete
Symbolic Reachability for Pete

- Initial region q1I: pc1 = out
- Symbolic rep of transition relation q1T:

 \[(pc1 = \text{out} \land pc1' = \text{req} \land x1' = x2) \lor
 (pc1 = \text{req} \land pc2 = \text{out} \land x1' = x2) \lor
 (pc1' = \text{in} \land pc1 = \text{out} \land x1' = x1) \lor
 (pc1' = pc1 \land x1' = x1)\]

- PostReg(q1I):

 Rename(X', X, Exists(X, q1I \cap q1T))

 Simplifies to pc1 = out \lor pc1 = req

Can We Improve Formula Representation?

- Propositional formulas not very satisfactory

 Each step of the computation may be expensive (equality test)

 More importantly, size of PostReg(qi) may grow with i, with no good heuristics for simplification

- Desirable properties of representation:

 All operations should be efficient

 Should maintain compactness whenever possible

 Representing qi and q\textprimei from module text should be efficient

Representations of Boolean Functions?

- We often reduce problems to the manipulation of Boolean Functions

 Truth Tables

 Disjunctive Normal Form

 Sum-of-Products

 Conjunctive Normal Form

 Product-of-Sums

Truth Table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f(a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

DNF and CNF

- \(f = abc + ab'c + abc\)
- \(f = (a + b + c)(a' + b + c)(a' + b' + c)(a' + b + c)(a + b + c)(a + b' + c)(a + b + c)(a + b + c)\)
- \(f = (a+b)c\)

Review

- How about DNF?

 \(F = ab\)

 \(F = abc + abc'\)

 \(F = ab' + bc' + ca'\)

 \(F = a'b + b'c + c'a\)
Ordered Binary Decision Graphs

- Representation for predicates over a set X of boolean variables
- The variables in X are totally ordered
- Paths in the graph encode assignments to variables in X
 - Terminal vertices classify paths into accepting and rejecting

Definition of BDG

- A finite set V of vertices
 - Internal vertices \(V^i\) and terminal vertices \(V^t\)
 - Root: a root vertex \(v^\circ\) in \(V\)
- Labeling: a labeling function that labels each internal vertex with a variable in \(X\), and each terminal vertex with a constant 0 or 1
 - Left edges: a function \(\text{left} : V^i \rightarrow V\)
 - If \(\text{left}(v)\) is an internal vertex then \(\text{label}(v) < \text{label(\text{left}(v)})\)
 - Right edges similar

Sample BDG

Function: \((x \land y) \lor (x' \land y')\)
- Ordering: \(x \land x' < x' < y < y'\)
- On every path from root to a terminal vertex, a variable appears 0 or 1 times

Boolean Function of a BDG

- With vertex \(v\), associate a function \(r(v)\)
 - if \(v\) is terminal then \(r(v)\) equals its label (0 or 1)
 - if \(v\) is internal then \(r(v)\) equals \((\neg \text{label}(v) \land r(\text{left}(v))) \lor (\text{label}(v) \land r(\text{right}(v)))\)
- BDG \(B\) represents the function \(r(B) = r(v^\circ)\)
- To check whether a state \(s\) satisfies \(r(B)\) simply follow path according to values assigned by \(s\)

Isomorphism and Equivalence

- Two BDGs \(B\) and \(C\) are isomorphic if the corresponding labeled graphs are isomorphic
 - Deciding isomorphism is easy
- Two BDGs \(B\) and \(C\) are equivalent if the boolean expressions \(r(B)\) and \(r(C)\) are equivalent.
 - Equivalence does not imply isomorphism
 - Deciding equivalence is difficult (so this is not what we want for symbolic reachability)

Binary Decision Tree

- \(f = (x \lor y) \land (z \lor w)\)
Reduction Rules

- If the two successors of a node v are identical, then remove v.

- If two nodes represent the same function, remove one and share other.
ROBDD

- Reduced
 - No more reduction rules can be applied
 - Represent each sub-function only once
 - Remove nodes where both successors are identical
- Ordered
 - Same variable ordering on all paths
 - Size of BDD depends on variable ordering