Integrating SAT with Multiway Decision Graphs for Efficient Model Checking

Sa’ed Abed*, Otmane Ait Mohamed†, Zijiang Yang‡ and Ghiath Al Sammane*
*ECE Department, Concordia University, Canada
Email: {s_abed, ait, sammame}@ece.concordia.ca
† Western Michigan University, U.S.A.
Email: zijiang.yang@wmich.edu

Abstract—Multiway Decision Graphs (MDGs) are special decision diagrams that subsume Binary Decision Diagrams (BDDs) and extend them by a first-order formulae suitable for model checking of data path circuits. Satisfiability Checking (SAT) has emerged recently as an alternative for decision graphs. Their performance is less sensitive to the problem sizes and they do not suffer from state space explosion. In this paper, we propose a model checking methodology that allows to combine tightly MDGs and SAT. We use a rewriting based SAT solver to prune the transition relation of the circuits to produce a smaller one that is fed to the MDG model checker. We support our reduction methodology by experimental results executed on benchmark properties.

I. INTRODUCTION

Model checking is an important formal verification technique that starts integrating digital system designs. It aims by exploring the reachable state space of a model to verify that an implementation satisfies a specification [1]. Binary Decision Diagram (BDD) [2], [3] is a canonical representation for Boolean functions that addresses this problem by providing an efficient encoding for the state space at the Boolean level. This representation allows model checkers to verify large systems. Still, most model checkers face the state space explosion problems while verifying large systems even using Symbolic Model Checking.

Multiway Decision Graph (MDG) [4] is an extension for BDD in the sense that it represents and manipulates a subset of first-order logic formulae suitable for large data path circuits. With MDGs, a data value is represented by a single variable of an abstract type and operations on data are represented in terms of an uninterpreted functions. The MDG operations and verification procedures are packaged as a set of tools and implemented in Prolog [5] providing facilities for hardware verification: invariant checking, equivalence checking and model checking.

An alternative for decision graphs is to represent the transition relation in Conjunctive Normal Form (CNF) and use Satisfiability Checking (SAT) with several properties that make them attractive compared to BDDs. Their performance is less sensitive to the problem sizes and they do not suffer from state space explosion. As a result, various researchers have developed routines for performing Bounded Model Checking (BMC) [6] and [7] using SAT. The common theme is to convert the problem of interest into a SAT problem, by devising the appropriate propositional Boolean formula, and to utilize other non-canonical representations of state sets. However, they all exploit the known ability of SAT solvers to find a single satisfying solution when it exists.

In this paper, we propose a model checking methodology that allows to tightly combine MDGs and SAT. We use a rewriting based SAT solver to prune the transition relation of the circuits to produce a smaller one that is fed to the MDG model checker. We support our reduction methodology by experimental results executed on benchmark properties.

II. RELATED WORK

The idea of combining BDDs and SAT for verification has been the subject of several research. Given that both techniques perform an implicit search on the underlying Boolean space, it is no surprise that many different ways of combining them have been explored recently, frequently suited to the target application. Their relative benefits have been combined in many verification applications such as BMC [6], [7] and model checking [8].

In [9], the authors used BDDs to represent state sets, and a CNF formula to represent the transition relation. All valid next state combinations are enumerated using a backtracking search algorithm for SAT that exhaustively visits the entire space of primary input, present state and next state variables. However, rather than using SAT to enumerate each solution all the way down to a leaf, they invoked BDD-based image computation at intermediate points within the SAT decision procedure, which effectively obtains all solutions below that point in the search tree. In a sense, their approach can be regarded as SAT providing a disjunctive decomposition of the image computation into many subproblems, each of which is handled in the standard way using BDDs.

Reducing the space requirement in model checking has been suggested in several works like [10] and [11]. These studies suggest partitioning the problem in several ways. The work in [10] shows how to parallelize the model checker based on explicit state enumeration. They achieve it by partitioning the state table for reached states into several processing nodes. The work in [11] discusses techniques to parallelize the BDD-based reachability analysis. The state space on which reachability is performed is partitioned into disjoint slices, where
each slice is owned by one process. The process performs a
reachability algorithm on its own slice.

In [12], the authors proposed a technique to construct a
reduced MDG model for circuits described at system level in
VHDL. The simplified model can be obtained using a high
level symbolic simulator called TheoSim, and by running an
appropriate symbolic simulation patterns. The work here pro-
vides another technique based on SAT solver. A comparison
and case study are part of an ongoing large project that aims
to develop a complete system level verification flow.

III. BACKGROUND

A. Boolean Satisfiability

The Boolean Satisfiability (SAT) problem is a well-known
constraint satisfaction problem with many applications in
computer-aided design, such as test generation, logic ver-
ification and timing analysis. Given a Boolean formula, the
objective is to either find an assignment of 0-1 values to the
variables so that the formula evaluates to true, or establish that
such an assignment does not exist. The Boolean formula is
typically expressed in CNF, also called product-of-sums form.
Each sum term (clause) in the CNF must be a sum of single literals,
where a literal is a variable or its negation. An n-clause is a
clause with n literals. For example, \((v_1 + v'_2 + v_k)\) is a 3-clause.

In order for the entire formula to evaluate to 1, each clause
must be satisfied, i.e. evaluate to 1.

In practice, most of the current SAT solvers are based on the
Davis-Putnam algorithm [13]. The basic algorithm begins
from an empty assignment, and proceeds by assigning a 0 or
1 value to one free variable at a time. After each assignment,
the algorithm determines the direct and transitive implications
of that assignment on other variables, typically called Boolean
Constraint Propagation (BCP). If no contradiction is detected
during the implication procedure, the algorithm picks the next
free variable, and repeats the procedure. A conflict occurs
when implications for setting the same variable to both 1 and
0 are produced. Otherwise, the algorithm attempts a
new partial assignment by complementing the most recently
assigned variable for which only one value has been tried so
far. This step is called backtracking. The algorithm terminates
either when all clauses have been satisfied and a solution
has been found, or when all possible assignments have been
exhausted. The algorithm is complete in that it will find a
solution if it exists.

B. Model Checking using Multiway Decision Graph

MDG is a finite Directed Acyclic Graph (DAG) with one
root, whose leaves are labeled by formulae of the logic True
(T). The internal nodes are labeled by terms, and the edges
issuing from an internal node \(v\) are labeled by terms of
the same sort as the label of \(v\). Such graph is a canonical
representation of a certain quantifier-free formulae, called a
Directed Formulae (DF). Each term in a DF belongs to either
a concrete or abstract sort. Concrete sorts have enumerations,
while abstract sorts do not.

A directed formula DF of type \(U \to V\) is a formula in
Disjunctive Normal Form (DNF) plus \(\top\) (truth) and \(\bot\) (false),
where \(U\) and \(V\) are two disjoint sets of variables. Just as
ROBDD must be reduced and ordered, MDGs must obey a
set of well-formedness conditions given in [4]. DFs are used
for two distinct purposes: to represent relations (transition and
output relations) and to represent sets (sets of states as well as
sets of input vectors and output vectors).

The input language of the MDG-tool is a Prolong-style
hardware description language (MDG-HDL), which supports
structural specification, behavioral specification or a mixture
of both. A structural specification is usually a netlist of com-
ponents connected by signals, and a behavioral specification
is given by a tabular representation of transition relations or a
truth table.

In MDG model checking, the properties to be verified are
expressed by formulas in \(\mathcal{L}_{MDG}\). \(\mathcal{L}_{MDG}\) atomic formulae are
Boolean constants True and False, or equations of the form
\(t_1 = t_2\), where \(t_1\) is a variable (input, output or state variable)
and \(t_2\) is either a variable, an individual constant, an ordinary
variable or a function of ordinary variables. Ordinary variables
are defined to remember the values of the variables in the
current state. The basic formulas (called NextJet formulas)
in which only the temporal operator \(X\) (next time) is allowed
as follows [14]:

- Each atomic formula is a NextJet formulas;
- If \(p, q\) are NextJet formulas, then so are: \(!p\) (not \(p\)),
 \(p \land q\) (and \(p\) and \(q\)), \(p \lor q\) (or \(p\) or \(q\)), \(p \Rightarrow q\) (\(p\) implies \(q\)), \(X p\) (next-time \(p\)) and LET \(v\) = \(t\) IN \(p\),
 where \(t\) is a system variable and \(v\) an ordinary variable.

Using the temporal operators \(\text{AG}\) (always), \(\text{AF}\) (eventually)
and \(\text{AU}\) (until), the properties allowed in \(\mathcal{L}_{MDG}\) can have
the following forms:

\[
\text{Property} := \text{A(NextJet_formula)}
\]
\[
\text{AG(NextJet_formula)}
\]
\[
\text{AF(NextJet_formula)}
\]
\[
\text{A(NextJet_formula)} U \text{(NextJet_formula)}
\]
\[
\text{AG(NextJet_formula)} \Rightarrow F(NextJet_formula)
\]
\[
\text{AG((NextJet_formula) \land \text{(NextJet_formula}} U \text{NextJet_formula}))
\]

Model checking in the MDG system is carried out by
building automatically additional circuit that represents the
NextJet formulas appearing in the property to be verified,
compose it with the original circuit, and then check a simpler
property on the composite machine [15].

IV. COMBINING SAT AND MDG

We start with a system level design and a set of properties
written in \(\mathcal{L}_{MDG}\). As shown in Figure 1, we extract form the
behavioral design a transition relation in terms of DF. Then we
apply an abstraction technique to create a CNF formula and a
set of associated truth assignments constraints: \(B_{DF}\). During
this step we introduce Boolean variables for every clause
in the transition relation with suitable arguments (primary
variables (LHS) and uninterpreted function arguments). Also

IEEE ICM - December 2007
we specify additional constraints between clauses with similar arguments to be mutual. From the properties, we extract the set of reduction variables and feed them to the B_{DF} to the rewriting based SAT solver which will decide the truth assignment and the implication of this assignment and produce a reduced transition relation: Reduced B_{DF}. Then, we transform again the Reduced B_{DF} to the reduced transition relation in term of DF. The obtained DF with the L_{MDG} properties will be fed to the MDG Model Checker. The formal verification is performed then on this obtained reduced MDG using the existing MDG package.

A. Abstracting CNF from DF

\begin{algorithm}
\textbf{Algorithm 1 CREATECNFFORMULA(System)}
\begin{enumerate}
\item Formula = CreateLogicFormula(System);
\item BoolFormula = replace each term in Formula with a predicate;
\item Infer constraints between predicates;
\item Transform predicate to Boolean variable;
\item CNFFormula = ConvertToCNF(BoolFormula);
\item Return CNFFormula;
\end{enumerate}
\end{algorithm}

Algorithm 1 shows a sketch on how to obtain a transition relation in CNF. It first creates the transition relation in a general format at line 1. Assume the formula is

\[(x = 3) \land (y = 2) \lor (x = 5) \land (y = 4)\]

Line 2 will then introduce n predicates for every clause with LHS argument, so in the above formula we need four predicates and the formula becomes $(b_1(x) \land b_2(y)) \lor (b_3(x) \land b_4(y))$. Line 3 introduces additional constraints such that clauses with a similar LHS argument must be mutual. In this example we know that $b_1(x)$ and $b_3(x)$ cannot be true at the same time. Meanwhile, one of them has to be true, otherwise the formula cannot be satisfied $(b_1(x) \oplus b_3(x))$. Similar constraints can be applied to $b_2(y)$ and $b_4(y)$. Therefore, the Boolean formula $B(T_{DF})$ and the truth assignment constraints are shown below:

\[
B(T_{DF}) : \quad (b_1(x) \land b_2(y)) \lor (b_3(x) \land b_4(y)) \\
Constraints : \quad (b_1(x) \oplus b_3(x)) \quad (b_2(y) \oplus b_4(y))
\]

In line 4, we have resolved all dependencies and the predicates will be transformed to Boolean variables (i.e. $b_1(x)$ becomes b_1x). Note the Boolean formula is not in CNF yet. There exists linear algorithm to convert any Boolean formula to CNF [16], with additional variables introduced. As mentioned in line 5, the CNF representation for the above formula is:

\[
B(T_{DF}) : \quad (b_{1x} \land b_{3x}) \lor (b_{2y} \land b_{3y})\land \quad (b_{1x} \land b_{4y}) \lor (b_{2y} \land b_{4y}) \\
Constraints : \quad (b_{2x} \land b_{1x}) \land (b_{1x} \land b_{3x}) \\
\quad (b_{4y} \land b_{2y}) \land (b_{2y} \land b_{4y})
\]

B. Extracting Variables from Properties

Our approach to select a variable and assign it a value is based on (assumption) extracted from the dependent variables on the property and hence the resulting transition relation will be much smaller. In fact, in large systems where the design can be expressed as a conjunction of the individual transition relations of the state variables, it consumes large memory and time to verify a property. Our approach gives the possibility to assign a concrete variables to the inputs of the system. Thus, an important reduction is gained on the resulting transition relation which improves the performance of the MDG model checker in terms of memory and CPU time.

Just as an example, if we assume that $P1$ is dependent on b_{1x}, then if the SAT solver decides b_{1x} to be true, then the implication we can get is:

\[
B(T_{DF}) : \quad b_{2y} \\
Constraints : \quad (b_{4y} \lor b_{2y}) \land (b_{2y} \land b_{4y})
\]

which represents a very small transition relation consisting of only 1 clause compared to the original one of 4 clauses, and hence improve the performance.

V. APPLICATION AND RESULTS

The MDG tool has been demonstrated on the example of the Island Tunnel Controller (ITC) in [17], which was originally introduced by Fisler and Johnson [18]. The ITC controls the traffic lights at both ends of a tunnel based on the information collected by sensors installed at both ends of the tunnel: there is one lane tunnel connecting the mainland to an island. At each end of the tunnel, there is a traffic light as depicted in Figure 2.

The ITC is composed of five modules: The Island Light Controller (ILC), the Tunnel Controller (TC), the Mainland Light Controller (MLC), the Island Counter and the Tunnel Counter (refer to [18] for the state transition diagrams of each component).

We use the same case study and we consider the ITC with its properties as a benchmark in order to measure the influence of our method on the MDG model checking performance. Table 1 compares the verification results with and without reduction for five properties, run on a Sun enterprise server with Solaris 5.7 OS and 6.0 GB memory. We give the CPU time measured in seconds and the memory measured in MB that are used in building the reduced machine and checking the property.
challenging industrial benchmark in order to compare results with commercial model checking tools.

REFERENCES

We note that the reduction gain depends on the properties. The best gain in performance is obtained with property P3 where the time is reduced by 6.7 times the original one and the memory is reduced by a factor of 9.3 times. The worst case is the property P1 where the time is reduced by 1.2 times the original one and the memory reduction is not profitable.

In the case of property P1 the assumptions and the functionality tested needs several runs (when using our SAT reduction as case splitting). The sum of these runs for this particular case is a little bit lower to a single run without reduction. For P3, case splitting was really much more efficient. These differences show the sensitivity of the reduction technique to the property verified. Despite these fluctuations, the gain average in performance is a factor of 2 which is considered as a good result in the case of model checking approaches.

VI. CONCLUSIONS

We have proposed a reduction technique to integrate SAT solvers within the MDG model checking tool. We have used the specification of the design provided as properties to extract a reduced model that is verified by the MDG-tool. In fact, the SAT solver reduces the control aspects of the design while MDG abstracts the data aspect in order to target the formal verification of increasingly larger designs. The obtained performance is promising as it has been shown in the experimental results. However, the approach still in its early stages. Future work includes further applications using