
Efficient Distributed SAT and SAT-based Distributed
Bounded Model Checking

Malay K Ganai, Aarti Gupta, Zijiang Yang, and Pranav Ashar

{malay | agupta | jyang | ashar}@nec-labs.com
NEC Laboratories America, Princeton, NJ USA 08540

Fax: +1-609-951-2499

Abstract. SAT-based Bounded Model Checking (BMC), though a robust and
scalable verification approach, still is computationally intensive, requiring large
memory and time. Interestingly, with the recent development of improved SAT
solvers, it is frequently the memory limitation of a single server rather than
time that becomes a bottleneck for doing deeper BMC search. Distributing
computing requirements of BMC over a network of workstations can overcome
the memory limitation of a single server, albeit at increased communication
cost. In this paper, we present: a) a method for distributed-SAT over a network
of workstations using a Master/Client model where each client worsktation has
an exclusive partition of the SAT problem and uses knowledge of partition
topology to communicate with other Clients, b) a method for distributing SAT-
based BMC using the distributed-SAT. For the sake of scalability, at no point
in the BMC computation does a single workstation have all the information.
We experimented on a network of heterogenous workstations interconnected
with a standard Ethernet LAN . To illustrate, on an industrial design with
~13K FFs and ~0.5M gates, the non-disributed BMC on a single workstation
(with 4 Gb memory) ran out of memroy after reaching a depth of 120; on the
otherhand, our SAT-based distributed BMC over 5 similar workstations was
able to go upto 323 steps with a communication overhead of only 30%.

1 Introduction

With increasing design complexity of digital hardware, functional verification has
become the most expensive and time-consuming component of the product develop-
ment cycle [1]. Verifying modern designs requires robust and scalable approaches in
order to meet more-demanding time-to-market requirements. Formal verification
techniques like symbolic model checking [2, 3], based on the use of Binary Decision
Diagrams (BDDs) [4], offer the potential of exhaustive coverage and the ability to
detect subtle bugs in comparison to traditional techniques like simulation. However,
these techniques do not scale well in practice due to the state explosion problem. SAT
solvers enjoy several properties that make them attractive as a complement to BDDs.
Their performance is less sensitive to the problem sizes and they do not suffer from
space explosion. As a result, various researchers have developed routines for per-
forming Bounded Model Checking (BMC) using SAT [5-8]. Unlike symbolic model

mailto:ashar}@nec-labs.com

checking, BMC focuses on finding bugs of a bounded length, and successively in-
creases this bound to search for longer traces. Given a design and a correctness prop-
erty, it generates a Boolean formula, such that the formula is true if and only if there
exists a witness/counterexample of length k. This formula is then checked by a
backend SAT solver. Due to the many recent advances in SAT solvers [9-13], SAT-
based BMC can handle much larger designs and analyze them faster than before.

The main limitation of current applications of BMC is that it can do search
up to a maximum depth allowed by the physical memory on a single server. This
limitation comes from the fact that as the search bound k becomes larger, the memory
requirement due to unrolling of the design also increases. Especially for the memory-
bound designs, a single server with a limited memory has now become the bottleneck
to doing deeper search.

1.1 Motivation

Distributing computing requirements of BMC (memory and time) over network of
servers workstations can, however, overcome the memory limitation of a single
server. In this paper, we explore this possibility, and discuss our approaches in greater
detail that made it feasible. Before we delve into that, we would like to give an
intuition behind the feasibile solution.

A BMC problem (described in Section 2) originating from an unrolling of
the sequential circuit in different time frames provides a natural disjoint partitioning
of the problem and thereby, allows the computing resources to be configured in a
linear topology. The topology using one Master and several Clients is shown in Fig-
ure 1.

 Figure 1. Partitioning of Unrolled Circuit

Each Client Ci hosts a part of the unroll circuit i.e., from ni-1 to ni where ni

represents the partition depth. Each Ci (except for the terminals) is connected to Ci+1
and Ci-1. The Master is connected to each of the Clients. Using the linear topology,
we can distribute parts of the unroll circuit dynamically over additional Clients as and
when memory resources on current Clients get close to exhaustion.

To check the satisfiability of a Boolean problem originating from BMC
wherein the unrolled circuit is distributed over several servers, we must identify the

part of the SAT algorithm that may be delegated to each processor without requiring
any processor to have the entire problem data. Since Boolean Constraint Propagation
(BCP) on clauses can be done independently on an exclusive partition, it can be dele-
gated to each processor. Moreover, since about 80% of SAT time involves BCP, one
could achieve some level of parallelism by doing distributed-BCP. Note that any
approach similar to SAT-based BMC can use similar concept to exploit parallelism.

With this motivation we now briefly describe the organization of the rest of
the paper. With a brief discussion on prior related work in Section 1.2, we give a
short background in Section 2, our contributions in Section 3-7, experiments in
Section 8, and conclusions in Section 9.

1.2 Related Work

Parallelizing SAT solvers has been proposed by many researchers [14-19]. Most of
them target performance improvement of the SAT solver. These algorithms are based
on parititioning the search space on different processors using partial assignments on
the variables. Each processor works on the assigned space and communicates with
other processors only after it is done searching its portion of the search space. Such
algorithms are not scalable memory-wise due to high data redundancy as each
processor keeps the entire problem data (all clauses and variables).

In a closely related work on parallelizing SAT [16], the authors partition the
problem by distributing the clauses evenly on many application specific processors.
They use fine grain parallelism in the SAT algorithm to get better load balancing and
reduce communication costs. Though they have targeted the scalability issue by
partitoning the clauses disjointedly, the variables appearing in the clauses are not
disjoint. Therefore, whenever a Client finishes BCP on its set of clauses, it must
broadcast the newly implied variables to all the other processors. The authors
observed that over 90% of messages are broadcast messages. Broadcasting
implications can become a serious communication bottleneck when the problem
contains millions of variables.

 Reducing the space requirement in model checking has been suggested in
several works [20-22]. These studies suggest partitioning the problem in several
ways. The work in [20] shows how to parallelize the model checker based on explicit
state enumeration. They achieve it by partitioning the state table for reached states
into several processing nodes. The work in [21] discusses techniques to parallelize
the BDD-based reachability analysis. The state space on which reachability is per-
formed is partitioned into disjoint slices, where each slice is owned by one process.
The process performs a reachability algorithm on its own slice. In [22], a single com-
puter is used to handle one task at a time, while the other tasks are kept in external
memory. In another paper [23], the author suggested a possibility of distributing
SAT-based BMC but has not explored the feasibility of such an approach.

2 Background

State-of-the-art SAT Solver

The Boolean Satisfiability (SAT) problem consists of determining a satisfying as-
signment for a Boolean formula on the constituent Boolean variables or proving that
no such assignment exists. The problem is known to be NP-complete. Most SAT
solvers [9-13] employ DPLL style [24] algorithm as shown in Figure 2. A Boolean
problem can be expressed either in CNF form or logical gate form or both. A hybrid
SAT solver as in [12], where the problem is represented as both logical gates and a
CNF expression, is well suited for BMC.

 SAT_Solve(P=1) { // Check if constraint P=1 satisfiable?
 while(Decide()=SUCCESS) //selects a new variable
 while(Deduce()=CONFLICT)//BCP till conflict/no-conflict
 if (Diagnose()=FAILURE) //Add conflict learnt clause(s)

 return UNSAT;// UNSAT if conflict at decision level 0
 return SAT;} // no more decision to make

Figure 2. DPLL style SAT Solver

Bounded Model Checking

In BMC, the specification is expressed in LTL (Linear Temporal Logic). Given a
Kripke structure M, an LTL formula f, and a bound k, the translation task in BMC is
to construct a propositional formula [M, f]k, such that the formula is satisfiable if and
only if there exists a witness of length k [25]. The satisfiability check is performed
by a backend SAT solver. Verification typically proceeds by looking for witnesses or
counterexamples of increasing length until completeness threshold [25, 26]. The
overall algorithm of a SAT-based BMC for checking (or falsifying) a simple safety
property is shown in the Figure 3. The SAT problems generated by the BMC transla-
tion procedure grow bigger as k increases. Therefore, the practical efficiency of the
backend SAT solver becomes critical in enabling deeper searches to be performed.

 BMC(k,P){//Falsify safety property P within bound k
 for (int i=0; i<=k ; i++) {
 P

i
=Unroll(P,i);//Get property node at ith unrolled frame

 if (SAT_Solve(P
i
=0)=SAT) return WITNESS;//try to falsify

 }
 return NO_WITNESS; }

Figure 3: SAT-based BMC for Safety Property P

3 Our Contributions

Overview of Distributed-SAT

Given an exclusive partitioning of the SAT problem, we give an overview of the fine
grain parallelization of the three engines of the SAT algorithm (as described in Sec-
tion 2) on a Master/Client distributed memory environment. The Master controls the
execution of distributed-SAT. The decision engine is distributed in such a way that
each Client selects a good local variable and the Master then chooses the globally best
variable to branch on. During the deduction phase, each Client does BCP on its ex-
clusive local partitions, and the Master does BCP on the global learned conflict
clauses. Diagnosis is performed by the Master, and each Client performs a local back-
track when request by the Master. The Master does not keep all problem clauses and
variables; however, the Master maintains the global assignment stack and the global
state for diagnosis. This requires much less memory than the entire problem data. To
ensure proper execution of the parallel algorithm, each Client is required to be syn-
chronized. We give details of the parallelization and different communication mes-
sages in Section 5-9.

Novelties of Our Approach

In this paper, we present a method for distributing SAT over a network of
workstations using a Master/Client model where each Client worsktation has an
exclusive partition of the SAT problem. Though this work is closely related to [16],
there are some important differences: a) In [16], though each client has disjoint set of
clauses, variables are not disjoint. So, Clients after completing BCP, broadcast their
new implications to all other Clients. After decoding the message, each receiving
Client either reads the message or ignores it. In a communication network where BCP
messages dominate, broadcasting implications can be an overkill when the number of
variables runs into millions. In our improved distributed BCP, however, each Client
has the knowledge of the SAT-problem partition topology and uses that to
communicate with other Clients. This ensures that the receiving Client has to never
read a message that is not meant for it. b) The algorithm in [16] is developed
primarily for application specific processors, while our algorithm uses easily
available exisitng networks of workstations. We have described several innovative
optimization schemes to reduce the effect of communication overhead on
performance in general-purpose networks by identifying and executing tasks in
parallel while messages are in transit.

In this paper, we extend the SAT-based BMC (as a part of our formal verifi-
cation platform called DiVer) using topology-cognizant distributed-SAT to obtain a
SAT-based distributed BMC over a distributed-memory environment. For the sake of
scalability, our method makes sure that at no point in the BMC computation does a
single workstation have all the information. We developed our distributed algorithms
for a network of processors based on standard Ethernet and using the TCP/IP
protocol. We can also potentially use dedicated communication infrastructures that
may yield better performance, but for this work, we wanted to use an environment

that is easily available, and whose performance can be considered a lower bound. We
used a socket interface message passing library to provide standard bidirectional
communications.

4 Topology-cognizant Distributed-BCP

BCP is an integral part of any SAT solver. We distribute BCP on multiple processes
that are cognizant of topology of the SAT-problem partition running on a network of
workstations. In [16], during the distributed-SAT solve each Client broadcasts its
implications to all other processors. After decoding the message, each receiving proc-
ess either reads the message or ignores it. We improve this approach in the following
way. Each process is made cognizant of the disjoint partitioning. The process then
sends out implications to only those processes that share the partitioning interface
variables with it. Each receiving process simply decodes and reads the message. This
helps in two ways: a) the receiving buffer of the process is not filled with useless
information; b) receiving process does not spend time in decoding useless informa-
tion. This ensures that the receiving process has to never read a message that is not
meant for it.

We use a distributed model with one Master and several Client processors.
The Master’s task is to distribute BCP on each Client that owns an exclusive partition
of the problem. A bi-directional FIFO (First-in First-out) communication channel
exists only between the process and its known neighbor, i.e., each process is cogni-
zant of its neighbors. The process uses the partition topology knowledge for commu-
nication so as to reduce the traffic of the receiving buffer. A FIFO communication
channel ensures that the channel is in-order, i.e., the messages sent from one process
to another will be received in the order sent. Besides distributing BCP, the Master
also records implications from the Clients as each Client completes its task.

The main challenging task for the Master is to maintain causal-effect (“hap-
pens before”) ordering of implications in distributed-BCP since we cannot assume
channel speeds and relative times of message arrivals during parallel BCP. Maintain-
ing such ordering is important because it is required for correct diagnosis during
conflict analysis phase of SAT. In the following we discuss the problem in detail and
techniques to overcome it.

Consider the Master/Client model as shown in Figure 1. Client Ci can com-
municate with Ci-1 and Ci+1 besides the Master M. The Master and Clients can gener-
ate implication requests to other Clients; however, Clients can send replies to the
Master only for the request made to it. Along the reply message, Client also sends the
message ids of the requests, if any, it made to the other Clients. This is an optimiza-
tion step to reduce the number of redundant messages. To minimize reply wait time,
the Master is allowed to send requests to the Clients even when there are implications
pending from the Client provided that the global state (maintained by the Master) is
not in conflict.
Let p->q denote an implication request from p to q and p<-q denotes implication
replies from q to p. Note that though the channel between Ci and the Master is in-
order, what happens at the Event E3 cannot be guaranteed in the following.

E1: M->C1
E2: C1->C2
E3: M<-C2 or M<-C1

If M<-C2 “happens before” M<-C1, then we consider it an out-of-order reply since
the implications due to M<-C2 depend on C1->C2, which in turn depend on M->C1.
Moreover, any out-of-order reply from a Client makes subsequent replies from the
Client out-of-order until the out-of-order reply gets processed.

We propose a simple solution to handle out-of-order replies to the Master.
For each Client, the Master maintains a FIFO queue where the out-of-order replies
are queued. Since the channel between a Client and Master is in-order, this model
ensures that messages in the FIFO will not be processed until the front of the FIFO is
processed. We illustrate this with a short event sequence. For simplicity we show the
contents for FIFO for the Client C2.

E1: M->C1 FIFO(C2): -
E2: C1->C2 FIFO(C2): -
E3: M->C2 FIFO(C2): -
E4: M<-C2 (in response to E2) FIFO(C2): E4
E5: M<-C2 (in response to E3) FIFO(C2): E4,E5
E6: M<-C1 (in response to E1) FIFO(C2): - (E4 is processed before E5)

Note that in the reply event E6, the Client C1 also notifies the Master of the event E2.
Master queues E4 reply as an out-of-order reply as it is not aware of the responsible
event E2 until E6 happens. E5 reply is also queued as out-of-order as earlier out-of-
order reply E4 has not been processed yet. When E6 occurs, the Master processes the
messages from the events E6, E4 and E5 (in the order). This maintains the ordering of
the implications in the global assignment stack.

5 Distributed-SAT

We use fine grain parallelism in our distributed-SAT algorithm similar to the one
proposed in [16]. However, we use the topology-cognizant distributed-BCP (as de-
scribed in the previous section) to carry out distributed-SAT over network of work-
stations. First, we describe the task partitioning between the Master and Clients as
shown in the Figure 4.

Tasks of the Master
• Maintains list of constraints, global assignment stack, learnt clauses, antecedents
• Selects a new decision variable from the best local decision sent by each Client
• Global conflict analysis using the assignments and antecedents
• Local BCP on clauses; manages distributed-BCP
• Receives from Ci: New implications with antecedents and best local decision
• Sends to Ci: Implication on variables local to Ci variables, backtrack request, learnt local

clauses, update score request

Tasks of a Client Ci
• Maintains the ordered list of variables, scores, local assignment stack, local learnt clauses
• Keeps the exclusive partition of the problem and topological information
• Executes on request: Backtrack, decay score, update variable score, local BCP

• Receives from Master: Implications, backtrack request, update score, clause
• Receives from neighbor Cj : Implications on interface.
• Sends to Master: New Implications with antecedents and best local decision, best local

decision when requested, conflict node when local conflict occurs during BCP, request id
when implication request comes from other Clients

• Sends to neighbor Cj: New implication requests on interface.

Figure 4. Distributed-SAT and SAT-based Distributed-BMC

6 SAT-based Distributed-BMC

 A SAT-based BMC problem originating from an unrolling of the sequential circuit
over different time frames has a natural linear partition and thereby allows configur-
ing the computing resources in a linear topology. The topology using one Master and
several Clients is shown in Figure 1. Each Client Ci is connected to Ci+1 and Ci-1. The
Master controls the execution of the SAT-based distributed BMC algorithm. The
BMC algorithm in Figure 3 remains the same except for the following changes. The
Unroll procedure is now replaced by a distributed unrolling in which the procedure
Unroll is actually invoked on the Client that hosts the partition for the depth i. Note
that depending on the memory availability, the host Client is decided dynamically.
After the unrolling, the distributed-SAT algorithm is invoked (in place of SAT) to
check the satisfiability of the problem on the unrolled circuit that has been partitioned

over several workstations. Following are the tasks distribution of the Master and
Clients.

Tasks of the Master
• Allocates an exclusive problem partition to each host Client (box 300 in Figure 4)
• Requests an unrolling to the terminal Client (box 301 in Figure 4)
• Controls distributed-SAT as described in Section 5

Tasks of a Client
• Handle current unroll request and also advance by one (box 302 in Figure 4)
• Initiate a new Client as defined by the topology when new unroll size is too large
• Participate in distributed-SAT

7 Optimizations

Memory Optimizations in Distributed-SAT

The bookkeeping information kept by the Master grows with the unroll depth. The
scalability of our distributed-BMC is determined by how low is the ratio of the mem-
ory utilized by the Master to the total memory used by the Clients. Following steps
are taken to lower the scalability ratio:
� By delegating the task of choosing the local decision and maintaining the ordered

list of variables to the Client, we save the memory otherwise used by the Master.
� Master does not keep the entire circuit information anytime. It relies on the Clients

to send the reasons of implications that will be used during diagnosis.
 In our experiments, we observed that the scalability ratio for large designs is close to
0.1, which implies that we can do a 10 times deeper search using a distributed-BMC
as compared to a non-distributed (monolithic) BMC over network of similar ma-
chines (In our observation, the global learnt clauses maintained by Master is not ex-
ponentially large).

Tight Estimation of Communication Overhead

Inter-workstation communication time can be significant and adversely affects the
performance. We can mitigate this overhead by hiding execution of certain tasks
behind the communication latency. To have some idea of communication overhead,
we first need some strategy to measure the communication overhead and actual proc-
essing time. This is non-trivial due to asynchronous clock domain of the worksta-
tions. In the following, we first discuss a novel strategy to make tight estimation of
the wait time incurred by the Master due to inter-workstations communication in
Parallel BMC.

Consider a request-reply communication . Time stamps are local to the Mas-
ter and Client. At time Ts, the Master sends its request to the Client. The Client re-
ceives the message at its time tr. The Client processes the message and sends the reply

to the Master at time ts. The Master, in the meantime, does some other tasks and then
starts waiting for the message at time Tw . The Master receives the message at time Tr.
Without accounting for the Client processing time, wait time would be simply,

Wait_Time = Tr – Tw if Tr > Tw (= 0 othewise)
This calculated wait time would be an over-estimation of the actual wait time. To
account for the Client processing time, we propose the following steps:
� Master sends the request with Ts embedded in the message.
� Client replies back to the Master with the time stamp (Ts+(ts- tr)).
� The Master, depending on the time Tw , calculates the actual wait time as follows:

� Case Tw1: Tw < (Ts+(ts- tr)) Wait _Time = Tr-(Ts+(ts- tr))
� Case Tw2: (Ts+(ts- tr)) < Tw < Tr Wait _Time = Tr -Tw
� Case Tw3: Tr < Tw Wait _Time = 0

Performance Optimizations in Distributed-SAT

Now we discuss several performance optimizations in the distributed-SAT algorithm.
� A large number of communication messages tend to degrade the overall perform-

ance. We took several means to reduce the overhead:
� The Master waits for all Clients to stabilize before sending a new implication

request. This reduces the number of implication messages sent.
� Clients send their best local decision along with every implication and back-

track replies. At the time of decision, the Master, then, only selects from the
best local decisions. It is not required to make explicit requests for a decision
variable to each Client separately.

� For all implication requests, Clients send replies to only the Master. This re-
duces the number of redundant messages on the network.

� Client sends active variables to the Master before doing the initialization. While
the Master waits and/or processes the message, the Client does its initialization in
parallel.

� When Master requests each Client to backtrack, it has to wait for the Clients to
respond with a new decision variable. The following overlapping tasks are done to
mitigate the wait time:
� Local backtrack (box 207b in Figure 4) by the Master is done after the remote

request is sent (box 207b in Figure 4). While the Master waits for the decision
variable from the Client, the Master also sends the learnt local conflict clauses
to the respective Client.

� The function for adjusting variable score (box 217 in Figure 4) is invoked in the
Client after it sends the next decision variable (during backtrack request from
the Master) (box 216 in Figure 4). Since message-send is non-blocking, poten-
tially the function is executed in parallel with send. On the downside, the deci-
sion variable that is chosen may be a stale decision variable. However, note that
the local decision variable that is sent is very unlikely be chosen as decision
variable. The reason is that in the next step after backtrack there will be an im-
plication. Since the Client sends the decision variable after every implication
request, the staleness of the decision variable will be eventually eliminated.

Performance optimization in SAT-based Distributed-BMC

� The design is read and initialization is done in all the clients to begin with. This

reduces the processing time when the unrolling is initiated onto a new Client.
� Advance unrolling is done in the client while the client is waiting for implication

request from the Master. This includes invoking a new partition in a new Client.

8 Experiments

We conducted our evaluation of distributed -SAT and SAT-based distributed BMC
on a network of workstations, each composed of dual Intel 2.8GHz Xeon Processor
with 4Gb physical memory running Red Hat Linux 7.2, interconnected with a stan-
dard 10Mbs/100Mbs/1Gbps Ethernet LAN. We compare the performance and scal-
ability of our distributed algorithm with a non-distributed (monolithic) approach. We
also measure the communication overhead using the accurate strategy as described in
Section 7.

We performed our first set of experiments to measure the performance penalty and
communication overhead for the distributed algorithms. We employed our SAT-
based distributed algorithm on 15 large industrial examples, each with a safety prop-
erty. For these designs, the number of flip-flops ranges from ~1K to ~13K and num-
ber of 2-input gates ranges from ~20K to ~0.5M. Out of 15 examples, 6 have counter
examples and the rest do not have counterexample within the bound chosen. We used
a Master (referred to as M) and 2 Clients (referred as C1 and C2) model where C1
and C2 can communicate with each other. We used a controlled environment for the
experiment under which, at each SAT check in the distributed-BMC, the SAT algo-
rithm executes the tasks in a distributed manner as described earlier except at the time
of decision variable selection and backtracking, when it is forced to follow the se-
quence that is consistent with the sequential SAT. We also used 3 different settings of
the Ethernet switch to show how the network bandwidth affects the communication
overheads. We present the results of the controlled experiments in Table 1[a-b].

In Table 1a, the 1st Column shows the set of designs (D1-D6 have a counterexam-
ple), the 2nd Column shows the number of Flip Flops and 2-input Gates in the fani-
cone of the safety property in the corresponding design, the 3rd Column shows the
bound depth limit for analysis, the 4th Column shows the total memory used by the
non-distributed BMC, the 5th Column shows the partition depth when Client C2 took
an exclusive charge of the further unrolling, Columns 6-8 show the memory distribu-
tion among the Master and the Clients. In the Column 9, we calculate the scalability
ratio, i.e., the ratio of memory used by the Master to that of the total memory used by
Clients. We observe that for larger designs, the scalability factor is close to 0.1
though for comparatively smaller designs, this ratio was as high as 0.8. This can be
attributed to the minimum bookkeeping overhead of the Master. Note that even
though some of the designs have same number of flip-flops and gates, they have
different safety properties. The partition depth chosen was used to balance the mem-
ory utilization; however, the distributed-BMC algorithm chooses the partition depth
dynamically to reduce the peak requirement on any one Client processor.

In Table 1b, the 1st Column shows the cumulative time taken (over all steps) by
non-distributed BMC, the 2nd Column shows the cumulative time taken (start to finish
of Master over all steps) by our distributed-BMC excluding the message wait time,
Columns 3-5 show the total message wait time for the Master in a 10/100/1000Mbps
Ethernet Switch setting. In the Column 6, we calculate the performance penalty by
taking the ratio of the time taken by distributed to that of non-distributed BMC (=Para
Time/ Mono Time). In the Column 7, we calculate the communication overhead for
the 1Gbps switch setting by taking the ratio of the message waiting time to distributed
BMC time (=wait time for 1 Gbps/ Para Time). On average we find that the perform-
ance penalty is 50% and communication overhead is 70% with overall degradation by
a factor of 2.55 (=1.5 * 1.7).

Table 1 [a-b]. Memory & Performance evaluation of the distributed SAT-based BMC

(a) Memory Utilization (b) Performance Evaluation
P Mem
(Mb) MWT (sec)

EX
FF (K)/

Gate (K) D

M
Mem
(Mb)

Part
D M C1 C2

 S
ratio

MT
(sec)

PT
(sec)

1gbs 0.1gbs 1mbps

Perf
Pntly

Com
Ovr

D1 4.2/30 16 20 5 8 5 16 0.4 8.9 12.8 11.4 34.5 991.2 1.4 0.9
D2 4.2/30 14 18 5 8 6 13 0.4 4.2 6.7 10.5 24.2 698.6 1.6 1.6
D3 4.2/30 17 21 5 9 5 17 0.4 9.7 15.6 11.2 33.2 767.9 1.6 0.7
D4 4.2/30 9 10 5 3 4 6 0.3 0.8 1.9 1.8 3.8 107.7 2.4 0.9
D5 4.2/30 15 18 5 8 5 15 0.4 5.2 8.2 10 31.4 680.5 1.6 1.2
D6 4.2/30 7 8 5 2 4 4 0.3 0.3 1.1 0.6 1.6 45.1 3.7 0.5
D7 4.2/30 21 24 5 7 4 20 0.3 9.5 14.7 9 40 855.3 1.5 0.6
D8 1.0/18 55 68 30 20 35 31 0.3 37.9 52.1 22.1 109 1895.3 1.4 0.4
D9 0.9/18 67 124 30 65 33 49 0.8 314.6 454.5 130 702.4 12922.9 1.4 0.3

D10 5.2/37 21 29 5 10 4 24 0.4 23.4 38.4 17.8 71.8 764.1 1.6 0.5
D11 12.7/448 61 1538 45 172 1071 480 0.1 919 1261.41135.7 2403 5893.2 1.4 0.9
D12 3.7/158 81 507 40 47 246 267 0.1 130.5 89.1 0.1 65.1 63.2 0.7 0.0
D13 3.7/158 41 254 20 24 119 141 0.1 33.7 23.2 0.4 6.3 16.1 0.7 0.0
D14 3.7/158 81 901 40 149 457 447 0.2 452.8 360.6 87.4 653.5 1288.6 0.8 0.2
D15 3.7/158 81 901 40 135 457 443 0.2 442.2 344.6 97.2 679.9 1138.5 0.8 0.3

In some cases, D12-D15, however, we find an improvement in performance over
non-distributed BMC. This is due to the exploitation of parallelism during the Client
initialization step as described in Section 7. Note that the message wait time adversely
gets affected with lowering the switch setting from 1Gbps to 10Mbps. This is attrib-
uted to the fact that Ethernet LAN is inherently a broadcast non-preemptive commu-
nication channel.

In our second set of experiments, we used the 5 largest (of 15) designs D11-D15
that did not have a witness. For distributed-BMC, we configured 5 workstations into
one Master and 4 Clients C1-C4; each connected with the 1Gbps Ethernet LAN. In
this setting, Clients are connected in a linear topology and the Master is connected in
a star with others. In this experiment, we show the ability of the distributed-BMC to

do deeper search using distributed memory. For the design D11, we used a partition
of 81 unroll depths on each Client and for designs D12-15, we used partition of 401
unroll depths on each Client. The results are shown in the Table 2.

In Table 2, the 1st Column shows the set of large designs that were hard to verify,
the 2nd Column shows the farthest depth to which non-distributed BMC could search
before it runs out of memory, the 3rd Column shows the time taken to reach the depth
in the 2nd Column, the 4th Column shows the unroll depth reached by distributed-
BMC using the allocated partition, the 5th Column shows the time taken to reach the
depth in the 4th Column excluding the message wait time, Columns 6-10 show the
memory distribution for the Master and Clients, the 11th Column shows the total
message wait time. In the Column 12, we calculate the communication overhead by
taking the ratio of message wait time to the distributed-BMC time (=MWT time/ Para
Time). In the Column 13, we calculate the scalability ratio by taking the ratio of
memory used by the Master to that of the total memory used by the Clients.

Table 2 Comparison of monolithic and distributed BMC on Industrial designs

We use the design D11 with ~13K flip-flops and ~0.5Million gates to show the

performance comparison. For the design D11 we could analyze up to a depth of 323
with only 30% communication overhead, while using a non-distributed version we
could analyze only up to 120 time frames under the per-workstation memory limit.
Low scalability factor, i.e., 0.1 for large designs indicates that for these designs our
distributed-BMC algorithm could have gone 10 times deeper compared to the non-
distributed version for similar set of machines. We also observe that the communica-
tion overhead for these designs was about 45% on average, a small penalty to pay for
deeper search.

9 Conclusions

For verifying designs with high complexity, we need a scalable and robust solution.
SAT-based BMC is quite popular because of its robustness and better debugging
capability. Although, SAT-based BMC is able to handle increasingly larger designs
than before as a result of advancement of SAT solvers, the memory of a single server
has become a serious limitation to carrying out deeper search. Existing parallel algo-
rithms either focus on improving the SAT performance or are used in either explicit
state-based model checkers or in unbounded implicit state-based model checkers. To

Para Memory (in Mb)

Ex
Mono
Depth

Mono
Time
(sec)

Para
Depth

Para
Time
(sec) M C1 C2 C3 C4

MWT
(sec)

Comm
Ovrhd

S
Ratio

D11 120 1642.3 323 6778.5 634 1505 1740 1740 1730 1865.1 0.3 0.1
D12 553 4928.3 1603 13063.4 654 1846 1863 1863 1863 5947.7 0.5 0.1
D13 553 4899.5 1603 12964.5 654 1846 1864 1864 1864 5876.8 0.5 0.1
D14 567 642.8 1603 2506.2 654 1833 1851 1851 1851 1585.4 0.6 0.1
D15 567 641.9 1603 1971.5 654 1833 1851 1851 1851 879.6 0.4 0.1

the best of our knowledge ours is the first detailed study on providing a feasible solu-
tion for SAT-based distributed-BMC using an improved distributed SAT algorithm.

Our distributed algorithm uses the normally available large pool of worksta-
tions that are inter-connected by standard Ethernet LAN. For the sake of scalability,
our distributed algorithm makes sure that no single processor has the entire data.
Also, each process is cognizant of the partition topology and uses the knowledge to
communicate with the other process; thereby, reducing the process’s receiving buffer
with unwanted information. We have also proposed several memory and performance
optimization schemes to achieve scalability and decrease the communication over-
head.

In the future, we would like to evaluate our distributed-SAT and SAT-based
distributed-BMC on a clustered system for high performance computing that has low
latency and high bandwidth communication [27].

10 Acknowledgements

We thank Guoqiang Pan for implementing the socket-based message-passing library.

References

[1] A. Silburt, A. Evans, G. Vrckovik, M. Diufrensne, and T. Brown, "Functional
Verification of ASICs in Silicon Intensive Systems," presented at DesignCon98 On-
Chip System Design Conference, 1998.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking: MIT Press, 1999.
[3] K. L. McMillan, Symbolic Model Checking: An Approach to the State Explosion

Problem: Kluwer Academic Publishers, 1993.
[4] R. E. Bryant, "Graph-based algorithms for Boolean function manipulation," IEEE

Transactions on Computers, vol. C-35(8), pp. 677-691, 1986.
[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, "Symbolic model check-

ing using SAT procedures instead of BDDs," in Proceedings of the Design Automa-
tion Conference, 1999, pp. 317-320.

[6] P. Bjesse and K. Claessen, "SAT-based verification without state space traversal," in
Proceedings of Conference on Formal Methods in Computer-Aided Design, 2000.

[7] M. Ganai and A. Aziz, "Improved SAT-based Bounded Reachability Analysis," in
Proceedings of VLSI Design Conference, 2002.

[8] P. A. Abdulla, P. Bjesse, and N. Een, "Symbolic Reachability Analysis based on
{SAT}-Solvers," in Proceedings of Workshop on Tools and Algorithms for the
Analysis and Construction of Systems (TACAS), 2000.

[9] J. P. Marques-Silva and K. A. Sakallah, "GRASP: A Search Algorithm for Proposi-
tional Satisfiability," IEEE Transactions on Computers, vol. 48, pp. 506-521, 1999.

[10] H. Zhang, "SATO: An efficient propositional prover," in Proceedings of Interna-
tional Conference on Automated Deduction, vol. 1249, LNAI, 1997, pp. 272-275.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, "Chaff: Engineering
an Efficient SAT Solver," in Proceedings of Design Automation Conference, 2001.

[12] M. Ganai, L. Zhang, P. Ashar, and A. Gupta, "Combining Strengths of Circuit-based
and CNF-based Algorithms for a High Performance SAT Solver," in Proceedings of
the Design Automation Conference, 2002.

[13] A. Kuehlmann, M. Ganai, and V. Paruthi, "Circuit-based Boolean Reasoning," in
Proceedings of Design Automation Conference, 2001.

[14] B. W. Wah, G.-J. Li, and C. F. Yu, "Multiprocessing of Combinational Search Prob-
lems," IEEE computer, pp. 93-108, 1985.

[15] H. Zhang, M. P. Bonacina, and J. Hsiang, "PSATO: a Distributed Propositional
Prover and its Application to Quasigroup Problems," Journal of Symbolic Computa-
tion, 1996.

[16] Y. Zhao, "Accelerating Boolean Satisfiability through Application Specific Process-
ing.," Ph.D. Thesis. Princeton, 2001.

[17] C. Powley, C. Fergusion, and R. Korf, "Parallel Heuristic Search: Two Approaches,"
in Parallel Algorithms for Machine Intelligence and Vision, V. Kumar, P. S.
Gopalakrishnan, and L. N. Kanal, Eds. New York: Springer-Verlag, 1990.

[18] B. Jurkowiak, C. M. Li, and G. Utard, "Parallelizing Satz Using Dynamic Workload
Balancing," presented at Workshop on Theory and Applications of Satisfiability
Testing, 2001.

[19] M. Boehm and E. Speckenmeyer, "A Fast Parallel SAT-solver - Efficient Workload
Balancing," presented at Third International Symposium on Artificial Intelligence
and Mathematics, Fort Lauderdale, Florida, 1994.

[20] U. Stern and D. L. Dill, "Parallelizing the Murphi Verifier," presented at Computer
Aided Verification, 1997.

[21] T. Heyman, D. Geist, O. Grumberg, and A. Schuster, "Achieving Scalability in Paral-
lel Reachability Analysis of Very Large Circuits," presented at Computer-Aided
Verification, 2000.

[22] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli, "Reach-
ability Analysis using Partitioned-ROBDDs," presented at International Conference
on Computer -Aided Design, 1997.

[23] A. Yadgar, "Parallel SAT Solving for Model Checking.
www.cs.technion.ac.il/~yadgar/Research/research.pdf," 2002.

[24] M. Davis, G. Longeman, and D. Loveland, "A Machine Program for Theorem Prov-
ing," Communications of the ACM, vol. 5, pp. 394-397, 1962.

[25] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, "Symbolic Model Checking without
BDDs," in Proceedings of Workshop on Tools and Algorithms for Analysis and Con-
struction of Systems (TACAS), vol. 1579, LNCS, 1999.

[26] M. Sheeran, S. Singh, and G. Stalmarck, "Checking Safety Properties using Induction
and a SAT Solver," in Proceedings of Conference on Formal Methods in Computer-
Aided Design, 2000.

[27] A. Hasegawa, H. Matsuoka, and K. Nakanishi, "Clustering Software for Linux-Based
HPC," NEC Research & Development, vol. vol 44, No. 1, pp. 60-63, 2003.

http://www.cs.technion.ac.il/~yadgar/Research/research.pdf,

