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Abstract. SAT-based Bounded Model Checking (BMC), though a robust and 
scalable verification approach, still is computationally intensive, requiring large 
memory and time. Interestingly, with the recent development of improved SAT 
solvers, it is frequently the memory limitation of a single server rather than 
time that becomes a bottleneck for doing deeper BMC search. Distributing 
computing requirements of BMC over a network of workstations can overcome 
the memory limitation of a single server, albeit at increased communication 
cost. In this paper, we present: a) a method for distributed-SAT over a network 
of workstations using a Master/Client model where each client worsktation has 
an exclusive partition of the SAT problem and uses knowledge of partition 
topology to communicate with other Clients, b) a method for distributing SAT-
based BMC using the distributed-SAT. For the sake of  scalability, at no point 
in the BMC computation does a single workstation have all the information. 
We experimented on a network of heterogenous workstations interconnected 
with a standard Ethernet LAN .  To illustrate, on an industrial design with 
~13K FFs and ~0.5M gates, the non-disributed  BMC on a single workstation 
(with 4 Gb memory) ran out of memroy after reaching a depth of 120; on the 
otherhand, our SAT-based distributed BMC over 5 similar workstations was 
able to go upto 323 steps with a communication  overhead of only 30%.   

1   Introduction 

With increasing design complexity of digital hardware, functional verification has 
become the most expensive and time-consuming component of the product develop-
ment cycle [1]. Verifying modern designs requires robust and scalable approaches in 
order to meet more-demanding time-to-market requirements. Formal verification 
techniques like symbolic model checking [2, 3], based on the use of Binary Decision 
Diagrams (BDDs) [4], offer the potential of exhaustive coverage and the ability to 
detect subtle bugs in comparison to traditional techniques like simulation. However, 
these techniques do not scale well in practice due to the state explosion problem. SAT 
solvers enjoy several properties that make them attractive as a complement to BDDs. 
Their performance is less sensitive to the problem sizes and they do not suffer from 
space explosion. As a result, various researchers have developed routines for per-
forming Bounded Model Checking (BMC) using SAT [5-8]. Unlike symbolic model 
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checking, BMC focuses on finding bugs of a bounded length, and successively in-
creases this bound to search for longer traces. Given a design and a correctness prop-
erty, it generates a Boolean formula, such that the formula is true if and only if there 
exists a witness/counterexample of length k. This formula is then checked by a 
backend SAT solver. Due to the many recent advances in SAT solvers [9-13], SAT-
based BMC can handle much larger designs and analyze them faster than before.  

The main limitation of current applications of BMC is that it can do search 
up to a maximum depth allowed by the physical memory on a single server.  This 
limitation comes from the fact that as the search bound k becomes larger, the memory 
requirement due to unrolling of the design also increases. Especially for the memory-
bound designs, a single server with a limited memory has now become the bottleneck 
to doing deeper search.  

1.1 Motivation   

Distributing computing requirements of BMC (memory and time) over network of 
servers workstations can, however,  overcome the memory limitation of a single 
server. In this paper, we explore this possibility, and discuss our approaches in greater 
detail that made it feasible. Before we delve into that, we would like to give an 
intuition behind the feasibile solution.  

A BMC problem (described in Section 2) originating from an unrolling of 
the sequential circuit in different time frames provides a natural disjoint partitioning 
of the problem and thereby, allows the computing  resources to be configured in a 
linear topology.  The topology using one Master and several Clients is shown in Fig-
ure 1. 

 
 
 
 
 
 
 
 
 
 

 
 Figure 1. Partitioning of Unrolled Circuit 

 
Each Client Ci hosts a part of the unroll circuit i.e., from ni-1 to ni where ni 

represents the partition depth. Each Ci  (except for the terminals) is connected to Ci+1 
and Ci-1. The Master is connected to each of the Clients. Using the linear topology, 
we can distribute parts of the unroll circuit dynamically over additional Clients as and 
when memory resources on current Clients get close to exhaustion.   

To check the satisfiability of a Boolean problem originating from BMC 
wherein the unrolled circuit is distributed over several servers, we must identify the 



part of the SAT algorithm that may be delegated to each processor without requiring 
any processor to have the entire problem data. Since Boolean Constraint Propagation 
(BCP) on clauses can be done independently on an exclusive partition, it can be dele-
gated to each processor. Moreover, since about 80% of SAT time involves BCP, one 
could achieve some level of parallelism by doing distributed-BCP. Note that any 
approach similar to SAT-based BMC can use similar concept to exploit parallelism. 

With this motivation we now briefly describe the organization of the rest of 
the paper. With a brief discussion on prior related work in Section 1.2, we give a 
short background in Section 2, our contributions in Section 3-7,  experiments in 
Section 8, and conclusions in Section 9. 

1.2   Related Work 

Parallelizing SAT solvers has been proposed by many researchers [14-19]. Most of 
them target performance improvement of the SAT solver. These algorithms are based 
on parititioning the search space on different processors using partial assignments on 
the variables. Each processor works on the assigned space and communicates with 
other processors only after it is done searching its portion of the search space. Such 
algorithms are not scalable memory-wise due to high data redundancy as each 
processor keeps the entire problem data (all clauses and variables).  

In a closely related work on parallelizing SAT [16], the authors partition the 
problem by distributing the clauses evenly on many application specific processors. 
They use fine grain parallelism in the SAT algorithm to get better load balancing and 
reduce communication costs. Though they have targeted the scalability issue by 
partitoning the clauses disjointedly, the variables appearing in the clauses are not 
disjoint. Therefore, whenever a Client finishes BCP on its set of clauses, it must 
broadcast the newly implied variables to all the other processors. The authors 
observed that over 90% of messages are broadcast messages. Broadcasting 
implications can become a serious communication bottleneck when  the problem 
contains millions of variables.  

 Reducing the space requirement in model checking has been suggested in 
several works [20-22]. These studies suggest partitioning the problem in several 
ways.  The work in [20] shows how to parallelize the model checker based on explicit 
state enumeration. They achieve it by partitioning the state table for reached states 
into several processing nodes. The work in [21] discusses techniques to parallelize 
the BDD-based reachability analysis. The state space on which reachability is per-
formed is partitioned into disjoint slices, where each slice is owned by one process. 
The process performs a reachability algorithm on its own slice.  In [22], a single com-
puter is used to handle one task at a time, while the other tasks are kept in external 
memory. In another paper [23], the author suggested a possibility of distributing 
SAT-based BMC but has not explored the feasibility of such an approach. 
 



2   Background 

State-of-the-art SAT Solver 
 

The Boolean Satisfiability (SAT) problem consists of determining a satisfying as-
signment for a Boolean formula on the constituent Boolean variables or proving that 
no such assignment exists. The problem is known to be NP-complete. Most SAT 
solvers [9-13] employ DPLL style [24] algorithm as shown in Figure 2. A Boolean 
problem can be expressed either in CNF form or logical gate form or both. A hybrid 
SAT solver as in [12], where the problem is represented as both logical gates and a 
CNF expression, is well suited for BMC. 

 
     
   SAT_Solve(P=1) { // Check if constraint P=1 satisfiable?  
     while(Decide()=SUCCESS) //selects a new variable 
       while(Deduce()=CONFLICT)//BCP till conflict/no-conflict 
         if (Diagnose()=FAILURE) //Add conflict learnt clause(s) 

    return UNSAT;// UNSAT if conflict at decision level 0 
     return SAT;} // no more decision to make 
        

 

Figure 2. DPLL style SAT Solver 

Bounded Model Checking 
 

In BMC, the specification is expressed in LTL (Linear Temporal Logic).  Given a 
Kripke structure M, an LTL formula f, and a bound k, the translation task in BMC is 
to construct a propositional formula [M, f]k, such that the formula is satisfiable if and 
only if there exists a witness of length k [25].   The satisfiability check is performed 
by a backend SAT solver. Verification typically proceeds by looking for witnesses or 
counterexamples of increasing length until completeness threshold [25, 26].  The 
overall algorithm of a SAT-based BMC for checking (or falsifying) a simple safety 
property is shown in the Figure 3. The SAT problems generated by the BMC transla-
tion procedure grow bigger as k increases. Therefore, the practical efficiency of the 
backend SAT solver becomes critical in enabling deeper searches to be performed. 
     
   BMC(k,P){//Falsify safety property P within bound k 
     for (int i=0; i<=k ; i++) { 
 P

i
=Unroll(P,i);//Get property node at ith unrolled frame   

 if (SAT_Solve(P
i
=0)=SAT) return WITNESS;//try to falsify  

     } 
     return NO_WITNESS; } 

 

Figure 3: SAT-based BMC for Safety Property P 



3   Our Contributions 

Overview of Distributed-SAT 
 

Given an exclusive partitioning of the SAT problem, we give an overview of the fine 
grain parallelization of the three engines of the SAT algorithm (as described in Sec-
tion 2) on a Master/Client distributed memory environment. The Master controls the 
execution of distributed-SAT. The decision engine is distributed in such a way that 
each Client selects a good local variable and the Master then chooses the globally best 
variable to branch on.  During the deduction phase, each Client does BCP on its ex-
clusive local partitions, and the Master does BCP on the global learned conflict 
clauses. Diagnosis is performed by the Master, and each Client performs a local back-
track when request by the Master. The Master does not keep all problem clauses and 
variables; however, the Master maintains the global assignment stack and the global 
state for diagnosis. This requires much less memory than the entire problem data. To 
ensure proper execution of the parallel algorithm, each Client is required to be syn-
chronized. We give details of the parallelization and different communication mes-
sages in Section 5-9. 
 
Novelties of Our Approach 

 
In this paper, we present a method for distributing SAT over a network of 
workstations using a Master/Client model where each Client worsktation has an 
exclusive partition of the SAT problem. Though this work is closely related to [16], 
there are some important differences: a) In [16], though each client has disjoint set of  
clauses, variables are not disjoint. So, Clients after completing BCP, broadcast their 
new implications to all other Clients. After decoding the message, each receiving 
Client either reads the message or ignores it. In a communication network where BCP 
messages dominate, broadcasting implications can be an overkill when the number of 
variables runs into millions. In our improved distributed BCP, however,  each Client 
has the knowledge of the SAT-problem partition topology and uses that to 
communicate with other Clients. This ensures that the receiving Client has to never 
read a message that is not meant for it. b) The algorithm in [16]  is developed 
primarily for application specific processors, while our algorithm uses easily 
available exisitng networks of workstations. We have described several innovative 
optimization schemes to reduce the effect of communication overhead on 
performance in general-purpose networks by identifying and executing tasks in 
parallel while messages are in transit.  

In this paper, we extend the SAT-based BMC (as a part of our formal verifi-
cation platform called DiVer) using topology-cognizant distributed-SAT to obtain a 
SAT-based distributed BMC over a distributed-memory environment. For the sake of  
scalability, our method makes sure that at no point in the BMC computation does a 
single workstation have all the information. We developed our distributed algorithms 
for a network of processors based on standard Ethernet and using the TCP/IP 
protocol. We can also potentially use dedicated communication infrastructures that 
may yield better performance, but for this work, we wanted to use an  environment 



that is easily available, and whose performance can be considered a lower bound. We 
used a socket interface message passing library to provide standard bidirectional 
communications.   

4   Topology-cognizant Distributed-BCP 

BCP is an integral part of any SAT solver. We distribute BCP on multiple processes 
that are cognizant of topology of the SAT-problem partition running on a network of 
workstations. In [16], during the distributed-SAT solve each Client broadcasts its 
implications to all other processors. After decoding the message, each receiving proc-
ess either reads the message or ignores it. We improve this approach in the following 
way. Each process is made cognizant of the disjoint partitioning. The process then 
sends out implications to only those processes that share the partitioning interface 
variables with it. Each receiving process simply decodes and reads the message. This 
helps in two ways: a) the receiving buffer of the process is not filled with useless 
information; b) receiving process does not spend time in decoding useless informa-
tion. This ensures that the receiving process has to never read a message that is not 
meant for it. 

We use a distributed model with one Master and several Client processors. 
The Master’s task is to distribute BCP on each Client that owns an exclusive partition 
of the problem. A bi-directional FIFO (First-in First-out) communication channel 
exists only between the process and its known neighbor, i.e., each process is cogni-
zant of its neighbors. The process uses the partition topology knowledge for commu-
nication so as to reduce the traffic of the receiving buffer. A FIFO communication 
channel ensures that the channel is in-order, i.e., the messages sent from one process 
to another will be received in the order sent. Besides distributing BCP, the Master 
also records implications from the Clients as each Client completes its task.  

The main challenging task for the Master is to maintain causal-effect (“hap-
pens before”) ordering of implications in distributed-BCP since we cannot assume 
channel speeds and relative times of message arrivals during parallel BCP. Maintain-
ing such ordering is important because it is required for correct diagnosis during 
conflict analysis phase of SAT. In the following we discuss the problem in detail and 
techniques to overcome it.  

Consider the Master/Client model as shown in Figure 1. Client Ci can com-
municate with Ci-1 and Ci+1 besides the Master M. The Master and Clients can gener-
ate implication requests to other Clients; however, Clients can send replies to the 
Master only for the request made to it. Along the reply message, Client also sends the 
message ids of the requests, if any, it made to the other Clients. This is an optimiza-
tion step to reduce the number of redundant messages. To minimize reply wait time, 
the Master is allowed to send requests to the Clients even when there are implications 
pending from the Client provided that the global state (maintained by the Master) is 
not in conflict. 
Let p->q denote an implication request from p to q and p<-q denotes implication 
replies from q to p. Note that though the channel between Ci and the Master is in-
order, what happens at the Event E3 cannot be guaranteed in the following. 



E1: M->C1 
E2: C1->C2 
E3: M<-C2 or M<-C1 

If M<-C2  “happens before” M<-C1, then we consider it an out-of-order reply since 
the implications due to M<-C2 depend on C1->C2, which in turn depend on M->C1. 
Moreover, any out-of-order reply from a Client makes subsequent replies from the 
Client out-of-order until the out-of-order reply gets processed. 

We propose a simple solution to handle out-of-order replies to the Master. 
For each Client, the Master maintains a FIFO queue where the out-of-order replies 
are queued. Since the channel between a Client and Master is in-order, this model 
ensures that messages in the FIFO will not be processed until the front of the FIFO is 
processed. We illustrate this with a short event sequence. For simplicity we show the 
contents for FIFO for the Client C2. 

E1: M->C1       FIFO(C2): - 
E2: C1->C2      FIFO(C2): - 
E3: M->C2       FIFO(C2): - 
E4: M<-C2    (in response to E2) FIFO(C2): E4 
E5: M<-C2    (in response to E3)  FIFO(C2): E4,E5 
E6: M<-C1    (in response to E1)  FIFO(C2): - (E4 is processed before E5) 

Note that in the reply event E6, the Client C1 also notifies the Master of the event E2. 
Master queues E4 reply as an out-of-order reply as it is not aware of the responsible 
event E2 until E6 happens. E5 reply is also queued as out-of-order as earlier out-of-
order reply E4 has not been processed yet.  When E6 occurs, the Master processes the 
messages from the events E6, E4 and E5 (in the order). This maintains the ordering of 
the implications in the global assignment stack.  

5   Distributed-SAT 

We use fine grain parallelism in our distributed-SAT algorithm similar to the one 
proposed in [16].  However, we use the topology-cognizant distributed-BCP (as de-
scribed in the previous section) to carry out distributed-SAT over network of work-
stations. First, we describe the task partitioning between the Master and Clients as 
shown in the Figure 4.  

  
Tasks of the Master 
• Maintains list of constraints, global assignment stack, learnt clauses, antecedents 
• Selects a new decision variable from the best local decision sent by each Client 
• Global conflict analysis using the assignments and antecedents 
• Local BCP on clauses; manages distributed-BCP 
• Receives from Ci: New implications with antecedents and best local decision   
• Sends to Ci: Implication on variables local to Ci variables, backtrack request, learnt local 

clauses, update score request 
 
Tasks of a Client Ci 
• Maintains the ordered list of variables, scores, local assignment stack, local learnt clauses 
• Keeps the exclusive partition of the problem and topological information 
• Executes on request: Backtrack, decay score, update variable score, local BCP 



• Receives from Master: Implications, backtrack request, update score, clause 
• Receives from neighbor Cj : Implications on interface. 
• Sends to Master: New Implications with antecedents and best local decision, best local 

decision when requested, conflict node when local conflict occurs during BCP, request id 
when implication request comes from other Clients 

• Sends to neighbor Cj: New implication requests on interface. 
 

 
Figure 4. Distributed-SAT and SAT-based Distributed-BMC 

6   SAT-based Distributed-BMC 

 A SAT-based BMC problem originating from an unrolling of the sequential circuit 
over different time frames has a natural linear partition and thereby allows configur-
ing the computing resources in a linear topology. The topology using one Master and 
several Clients is shown in Figure 1. Each Client Ci is connected to Ci+1 and Ci-1. The 
Master controls the execution of the SAT-based distributed BMC algorithm. The 
BMC algorithm in Figure 3 remains the same except for the following changes. The 
Unroll procedure is now replaced by a distributed unrolling in which the procedure 
Unroll is actually invoked on the Client that hosts the partition for the depth i. Note 
that depending on the memory availability, the host Client is decided dynamically. 
After the unrolling, the distributed-SAT algorithm is invoked (in place of SAT) to 
check the satisfiability of the problem on the unrolled circuit that has been partitioned 



over several workstations. Following are the tasks distribution of the Master and 
Clients. 
 
Tasks of the Master 
• Allocates an exclusive problem partition to each host Client (box 300 in Figure 4) 
• Requests an unrolling to the terminal Client (box 301 in Figure 4) 
• Controls distributed-SAT as described in Section 5 
 
Tasks of a Client 
• Handle current unroll request and also advance by one (box 302 in Figure 4) 
• Initiate a new Client as defined by the topology when new unroll size is too large 
• Participate in distributed-SAT 

7   Optimizations  

Memory Optimizations in Distributed-SAT 
 

The bookkeeping information kept by the Master grows with the unroll depth. The 
scalability of our distributed-BMC is determined by how low is the ratio of the mem-
ory utilized by the Master to the total memory used by the Clients. Following steps 
are taken to lower the scalability ratio: 
� By delegating the task of choosing the local decision and maintaining the ordered 

list of variables to the Client, we save the memory otherwise used by the Master. 
�  Master does not keep the entire circuit information anytime. It relies on the Clients 

to send the reasons of implications that will be used during diagnosis. 
 In our experiments, we observed that the scalability ratio for large designs is close to 
0.1, which implies that we can do a 10 times deeper search using a distributed-BMC 
as compared to a non-distributed (monolithic) BMC over network of similar ma-
chines (In our observation, the global learnt clauses maintained by Master is not ex-
ponentially large). 

 
Tight Estimation of Communication Overhead 
 
Inter-workstation communication time can be significant and adversely affects the 
performance. We can mitigate this overhead by hiding execution of certain tasks 
behind the communication latency. To have some idea of communication overhead, 
we first need some strategy to measure the communication overhead and actual proc-
essing time. This is non-trivial due to asynchronous clock domain of the worksta-
tions. In the following, we first discuss a novel strategy to make tight estimation of 
the wait time incurred by the Master due to inter-workstations communication in 
Parallel BMC. 

Consider a request-reply communication . Time stamps are local to the Mas-
ter and Client. At time Ts, the Master sends its request to the Client. The Client re-
ceives the message at its time tr. The Client processes the message and sends the reply 



to the Master at time ts. The Master, in the meantime, does some other tasks and then 
starts waiting for the message at time Tw . The Master receives the message at time Tr.  
Without accounting for the Client processing time, wait time would be simply, 

Wait_Time = Tr – Tw  if  Tr > Tw  (= 0 othewise) 
This calculated wait time would be an over-estimation of the actual wait time. To 
account for the Client processing time, we propose the following steps: 
� Master sends the request with Ts embedded in the message. 
� Client replies back to the Master with the time stamp (Ts+( ts- tr)).   
� The Master, depending on the time Tw , calculates the actual wait time as follows: 

� Case Tw1:  Tw  <  (Ts+( ts- tr))             Wait _Time = Tr-(Ts+( ts- tr)) 
� Case Tw2: (Ts+( ts- tr)) < Tw < Tr Wait _Time = Tr -Tw  
� Case Tw3: Tr < Tw    Wait _Time = 0 
 

Performance Optimizations in Distributed-SAT 
 

Now we discuss several performance optimizations in the distributed-SAT algorithm. 
� A large number of communication messages tend to degrade the overall perform-

ance. We took several means to reduce the overhead: 
� The Master waits for all Clients to stabilize before sending a new implication 

request. This reduces the number of implication messages sent.   
� Clients send their best local decision along with every implication and back-

track replies. At the time of decision, the Master, then, only selects from the 
best local decisions. It is not required to make explicit requests for a decision 
variable to each Client separately. 

� For all implication requests, Clients send replies to only the Master. This re-
duces the number of redundant messages on the network.  

� Client sends active variables to the Master before doing the initialization. While 
the Master waits and/or processes the message, the Client does its initialization in 
parallel. 

� When Master requests each Client to backtrack, it has to wait for the Clients to 
respond with a new decision variable. The following overlapping tasks are done to 
mitigate the wait time: 
� Local backtrack (box 207b in Figure 4) by the Master is done after the remote 

request is sent (box 207b in Figure 4). While the Master waits for the decision 
variable from the Client, the Master also sends the learnt local conflict clauses 
to the respective Client. 

� The function for adjusting variable score (box 217 in Figure 4) is invoked in the 
Client after it sends the next decision variable (during backtrack request from 
the Master) (box 216 in Figure 4). Since message-send is non-blocking, poten-
tially the function is executed in parallel with send. On the downside, the deci-
sion variable that is chosen may be a stale decision variable. However, note that 
the local decision variable that is sent is very unlikely be chosen as decision 
variable. The reason is that in the next step after backtrack there will be an im-
plication. Since the Client sends the decision variable after every implication 
request, the staleness of the decision variable will be eventually eliminated. 

 



Performance optimization in SAT-based Distributed-BMC 
 
� The design is read and initialization is done in all the clients to begin with. This 

reduces the processing time when the unrolling is initiated onto a new Client. 
� Advance unrolling is done in the client while the client is waiting for implication 

request from the Master. This includes invoking a new partition in a new Client. 

8   Experiments 

We conducted our evaluation of distributed -SAT and SAT-based distributed BMC 
on a network of workstations, each composed of dual Intel 2.8GHz Xeon Processor 
with 4Gb physical memory running Red Hat Linux 7.2, interconnected with a stan-
dard 10Mbs/100Mbs/1Gbps Ethernet LAN. We compare the performance and scal-
ability of our distributed algorithm with a non-distributed (monolithic) approach. We 
also measure the communication overhead using the accurate strategy as described in 
Section 7. 

We performed our first set of experiments to measure the performance penalty and 
communication overhead for the distributed algorithms. We employed our SAT-
based distributed algorithm on 15 large industrial examples, each with a safety prop-
erty.  For these designs, the number of flip-flops ranges from ~1K to ~13K and num-
ber of 2-input gates ranges from ~20K to ~0.5M. Out of 15 examples, 6 have counter 
examples and the rest do not have counterexample within the bound chosen. We used 
a Master (referred to as M) and 2 Clients (referred as C1 and C2) model where C1 
and C2 can communicate with each other.  We used a controlled environment for the 
experiment under which, at each SAT check in the distributed-BMC, the SAT algo-
rithm executes the tasks in a distributed manner as described earlier except at the time 
of decision variable selection and backtracking, when it is forced to follow the se-
quence that is consistent with the sequential SAT. We also used 3 different settings of 
the Ethernet switch to show how the network bandwidth affects the communication 
overheads. We present the results of the controlled experiments in Table 1[a-b].   

In Table 1a, the 1st Column shows the set of designs (D1-D6 have a counterexam-
ple), the 2nd Column shows the number of Flip Flops and 2-input Gates in the fani-
cone of the safety property in the corresponding design, the 3rd Column shows the 
bound depth limit for analysis, the 4th Column shows the total memory used by the 
non-distributed BMC, the 5th Column shows the partition depth when Client C2 took 
an exclusive charge of the further unrolling, Columns 6-8 show the memory distribu-
tion among the Master and the Clients. In the Column 9, we calculate the scalability 
ratio, i.e., the ratio of memory used by the Master to that of the total memory used by 
Clients. We observe that for larger designs, the scalability factor is close to 0.1 
though for comparatively smaller designs, this ratio was as high as 0.8. This can be 
attributed to the minimum bookkeeping overhead of the Master.  Note that even 
though some of the designs have same number of flip-flops and gates, they have 
different safety properties. The partition depth chosen was used to balance the mem-
ory utilization; however, the distributed-BMC algorithm chooses the partition depth 
dynamically to reduce the peak requirement on any one Client processor.  



In Table 1b, the 1st Column shows the cumulative time taken (over all steps) by 
non-distributed BMC, the 2nd Column shows the cumulative time taken (start to finish 
of Master over all steps) by our distributed-BMC excluding the message wait time, 
Columns 3-5 show the total message wait time for the Master in a 10/100/1000Mbps 
Ethernet Switch setting. In the Column 6, we calculate the performance penalty by 
taking the ratio of the time taken by distributed to that of non-distributed BMC (=Para 
Time/ Mono Time). In the Column 7, we calculate the communication overhead for 
the 1Gbps switch setting by taking the ratio of the message waiting time to distributed 
BMC time (=wait time for 1 Gbps/ Para Time). On average we find that the perform-
ance penalty is 50% and communication overhead is 70% with overall degradation by 
a factor of 2.55 (=1.5 * 1.7). 

Table 1 [a-b]. Memory & Performance evaluation of the distributed SAT-based BMC 

(a) Memory Utilization (b) Performance Evaluation 
P Mem 
(Mb)  MWT (sec)  

EX 
FF (K)/ 

Gate (K) D 

M 
Mem 
(Mb) 

Part 
D  M C1 C2

 S 
ratio

MT
(sec)

PT 
(sec) 

1gbs 0.1gbs 1mbps 

 
Perf 
Pntly 

Com 
Ovr 

D1 4.2/30 16 20 5 8 5 16 0.4 8.9 12.8 11.4 34.5 991.2 1.4 0.9 
D2 4.2/30 14 18 5 8 6 13 0.4 4.2 6.7 10.5 24.2 698.6 1.6 1.6 
D3 4.2/30 17 21 5 9 5 17 0.4 9.7 15.6 11.2 33.2 767.9 1.6 0.7 
D4 4.2/30 9 10 5 3 4 6 0.3 0.8 1.9 1.8 3.8 107.7 2.4 0.9 
D5 4.2/30 15 18 5 8 5 15 0.4 5.2 8.2 10 31.4 680.5 1.6 1.2 
D6 4.2/30 7 8 5 2 4 4 0.3 0.3 1.1 0.6 1.6 45.1 3.7 0.5 
D7 4.2/30 21 24 5 7 4 20 0.3 9.5 14.7 9 40 855.3 1.5 0.6 
D8 1.0/18 55 68 30 20 35 31 0.3 37.9 52.1 22.1 109 1895.3 1.4 0.4 
D9 0.9/18 67 124 30 65 33 49 0.8 314.6 454.5 130 702.4 12922.9 1.4 0.3 

D10 5.2/37 21 29 5 10 4 24 0.4 23.4 38.4 17.8 71.8 764.1 1.6 0.5 
D11 12.7/448 61 1538 45 172 1071 480 0.1 919 1261.41135.7 2403 5893.2 1.4 0.9 
D12 3.7/158 81 507 40 47 246 267 0.1 130.5 89.1 0.1 65.1 63.2 0.7 0.0 
D13 3.7/158 41 254 20 24 119 141 0.1 33.7 23.2 0.4 6.3 16.1 0.7 0.0 
D14 3.7/158 81 901 40 149 457 447 0.2 452.8 360.6 87.4 653.5 1288.6 0.8 0.2 
D15 3.7/158 81 901 40 135 457 443 0.2 442.2 344.6 97.2 679.9 1138.5 0.8 0.3 
 
In some cases, D12-D15, however, we find an improvement in performance over 
non-distributed BMC. This is due to the exploitation of parallelism during the Client 
initialization step as described in Section 7. Note that the message wait time adversely 
gets affected with lowering the switch setting from 1Gbps to 10Mbps. This is attrib-
uted to the fact that Ethernet LAN is inherently a broadcast non-preemptive commu-
nication channel. 

In our second set of experiments, we used the 5 largest (of 15) designs D11-D15 
that did not have a witness. For distributed-BMC, we configured 5 workstations into 
one Master and 4 Clients C1-C4; each connected with the 1Gbps Ethernet LAN. In 
this setting, Clients are connected in a linear topology and the Master is connected in 
a star with others. In this experiment, we show the ability of the distributed-BMC to 



do deeper search using distributed memory. For the design D11, we used a partition 
of 81 unroll depths on each Client and for designs D12-15, we used partition of 401 
unroll depths on each Client. The results are shown in the Table 2. 

In Table 2, the 1st Column shows the set of large designs that were hard to verify, 
the 2nd Column shows the farthest depth to which non-distributed BMC could search 
before it runs out of memory, the 3rd Column shows the time taken to reach the depth 
in the 2nd Column, the 4th Column shows the unroll depth reached by distributed-
BMC using the allocated partition, the 5th Column shows the time taken to reach the 
depth in the 4th Column excluding the message wait time, Columns 6-10 show the 
memory distribution for the Master and Clients, the 11th Column shows the total 
message wait time. In the Column 12, we calculate the communication overhead by 
taking the ratio of message wait time to the distributed-BMC time (=MWT time/ Para 
Time). In the Column 13, we calculate the scalability ratio by taking the ratio of 
memory used by the Master to that of the total memory used by the Clients. 

 
Table 2 Comparison of monolithic and distributed BMC on Industrial designs 

 
We use the design D11 with ~13K flip-flops and ~0.5Million gates to show the 

performance comparison. For the design D11 we could analyze up to a depth of 323 
with only 30% communication overhead, while using a non-distributed version we 
could analyze only up to 120 time frames under the per-workstation memory limit. 
Low scalability factor, i.e., 0.1 for large designs indicates that for these designs our 
distributed-BMC algorithm could have gone 10 times deeper compared to the non-
distributed version for similar set of machines. We also observe that the communica-
tion overhead for these designs was about 45% on average, a small penalty to pay for 
deeper search. 

9   Conclusions 

For verifying designs with high complexity, we need a scalable and robust solution. 
SAT-based BMC is quite popular because of its robustness and better debugging 
capability. Although, SAT-based BMC is able to handle increasingly larger designs 
than before as a result of advancement of SAT solvers, the memory of a single server 
has become a serious limitation to carrying out deeper search.  Existing parallel algo-
rithms either focus on improving the SAT performance or are used in either explicit 
state-based model checkers or in unbounded implicit state-based model checkers. To 

Para Memory (in Mb) 

Ex 
Mono 
Depth 

Mono 
Time 
(sec) 

Para 
Depth 

Para 
Time 
(sec) M C1 C2 C3 C4 

MWT
(sec) 

Comm 
Ovrhd 

S 
Ratio 

D11 120 1642.3 323 6778.5 634 1505 1740 1740 1730 1865.1 0.3 0.1 
D12 553 4928.3 1603 13063.4 654 1846 1863 1863 1863 5947.7 0.5 0.1 
D13 553 4899.5 1603 12964.5 654 1846 1864 1864 1864 5876.8 0.5 0.1 
D14 567 642.8 1603 2506.2 654 1833 1851 1851 1851 1585.4 0.6 0.1 
D15 567 641.9 1603 1971.5 654 1833 1851 1851 1851 879.6 0.4 0.1 



the best of our knowledge ours is the first detailed study on providing a feasible solu-
tion for SAT-based distributed-BMC using an improved distributed SAT algorithm.  

Our distributed algorithm uses the normally available large pool of worksta-
tions that are inter-connected by standard Ethernet LAN. For the sake of scalability, 
our distributed algorithm makes sure that no single processor has the entire data. 
Also, each process is cognizant of the partition topology and uses the knowledge to 
communicate with the other process; thereby, reducing the process’s receiving buffer 
with unwanted information. We have also proposed several memory and performance 
optimization schemes to achieve scalability and decrease the communication over-
head.   

In the future, we would like to evaluate our distributed-SAT and SAT-based 
distributed-BMC on a clustered system for high performance computing that has low 
latency and high bandwidth communication [27].   
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